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Resumo

Em um mundo onde milhares de transac¢oes de dados ocorrem via meios inseguros (como
a internet) a todo instante, o uso da criptografia torna-se essencial para a seguranga e
privacidade dos usuarios, bem como o estudo de diferentes métodos que proporcionem

sua melhor eficiéncia.

A Criptografia de Curvas Elipticas, proposta independentemente por Miller e Koblitz em
meados de 1986, propoe a utilizagao de curvas elipticas para esta finalidade, utilizando-se
do fato de que essas curvas, quando aplicadas em corpos finitos, geram grupos abelianos
com estruturas que tornam sua decriptacao mais lenta do que a de outras criptografias

geralmente utilizadas, como a RSA e a de Diffie-Hellman.

Neste trabalho, é proposto o estudo da Criptografia de Curvas Elipticas e suas aplicagoes,

adentrando conceitos da Algebra e da Geometria Algébrica.

Palavras-chaves: Criptografia, Curvas Elipticas, Problema do Logaritmo Discreto.



Abstract

In a world where thousands of data transactions occur via unsafe means (for instance,
the internet) all the time, the use of cryptography becomes essential to the security and

privacy of users, as well as the study of different methods that provide its efficiency.

Elliptic Curve Cryptography, proposed independently by Miller and Koblitz around 1986,
offers the use of elliptic curves with this goal. It uses the fact that these curves, when
applied in finite fields, generate abelian groups with structures that make the decryption
slower than that of its counterparts that are generally used, for instance, RSA and Diffie-

Hellman.

In this work, it’s proposed the study of Eliptic Curve Cryptography and its applications,

entering concepts of algebra and algebraic geometry.

Key-words: Cryptography, Elliptic Curves, Discrete Logarithm Problem.
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Introducao

A criptografia (do grego, cryptos: secreto, oculto e -grafia: escrita) consiste na
pratica de métodos para codificar uma mensagem de modo que apenas o destinatério real
consiga decifra-la. Sua evolugao esta profundamente ligada a existéncia da criptoanalise,
que tem por objetivo a decriptacao destes sistemas criptograficos por meio de analises

linguisticas, mateméaticas, entre outras.

Sinais de métodos similares a criptografia como forma de comunicacao podem ser
observados desde 2000 a.C., no Egito e na Mesopotamia. (COSTA; FIGUEIREDO, 2006)
Nesta época, as mensagens eram apenas ocultadas, sem que seu contetuido fosse modificado.
Isto era possivel pela utilizacao de diferentes alfabetos, e sua seguranca baseava-se somente
na esperanca de que a mensagem nao entrasse em contato com alguém que tivesse os
conhecimentos necessarios para decifra-la. Por conta de sua natureza, este método ainda

nao pode ser descrito como criptografia, mas sim, como esteganografia.

O inicio da criptografia classica é, usualmente, atribuido ao ditador romano Julio
César (100 — 44 a.E.C.), que utilizava um c6digo simples para comunicar-se em combate.
A Cifra de César consistia em substituir cada letra do alfabeto por n posicoes a sua frente,
permutando-as. A chave de criptografia, neste caso, era conhecer o valor de n para que
fosse possivel, posteriormente, permuta-las n posi¢oes para tras, retornando ao alfabeto

original. Como o alfabeto portugués possui 26 letras, é possivel obter 25 chaves diferentes.

A criptoanalise, neste periodo, resumia-se a testar por "forca bruta'todas as pos-
sibilidades de permutacoes, o que, para os dias atuais, pode parecer uma tarefa relativa-
mente simples. E preciso levar em conta, no entanto, que a grande maioria das populagoes
nao sabia ler ou escrever. Na tabela 1, observa-se um exemplo de uma permutacao para
a Cifra de César com n = 3, em que partimos do alfabeto original da primeira linha e o

ciframos com base na segunda linha.

Tabela 1 — Exemplo de permutacao para a Cifra de César

Alfabeto original . VvV W XY Z A B C D E
Alfabeto permutado Y Z A B CDE F G H

Fonte: Elaborado pela autora.

Durante a Idade Média, a utilizacdo de mensagens secretas era atribuida a magia
negra ou a bruxaria, e, portanto, amplamente desconsiderada. Os poucos resquicios que
existem de criptografia desta época sao, também, de cifragem monoalfabética, em que

cada letra do alfabeto corresponde a um tnico simbolo e vice-versa.
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Com a idade de ouro da civilizacdo arabe, houve avangos na criptoanalise que
tornaram necessaria a evolucao da criptografia. No século VII, al-Khalil decifrou antigos
criptogramas bizantinos baseando-se na ideia de que o titulo provavelmente seria "Em

nome de Deus", método conhecido como "método da palavra provavel".

Outro problema que as criptografias monoalfabéticas apresentam, de forma que
tornam-se facilmente decifraveis, mesmo nao sendo o destinatario legitimo da mensagem,
¢é o fato de que a frequéncia média em que uma letra especifica aparece em um texto de
uma determinada lingua é mais ou menos constante. Assim, utilizando-se de uma analise

de frequéncia das mesmas, é possivel decifrar a mensagem. (COUTINHO, 2016)

Tabela 2 — Frequéncia média das letras na lingua portuguesa (BRAGA, 2003)

Letra % Letra % Letra % Letra %

A 1464 G 1,30 N 505 T 4,34
B 1,04 H 128 O 10,73 U 4,64
C 388 1 6,18 P 252 V 1,70
D 410 J 040 Q 120 X 0,21
E 12,57 L 2,78 R 6,53 Z 0,47
F 1,02 M 475 S 7,81

Na lingua portuguesa, por exemplo, a letra A corresponde a letra de maior frequén-
cia média (14,64%), seguida pela letra E (12,57%). Utilizando-se desta informagao, é facil
admitir que, quaisquer que sejam as letras que corresponderdao as mesmas no novo co-
digo, serdo as que aparecerdao com maior frequéncia, e, assim, nao se torna uma tarefa

complicada a de quebrar uma Cifra de César.

Apesar desses conhecimentos arabes, os europeus continuaram utilizando cripto-
grafias de facil decifragem até a Idade Moderna, em que iniciou-se o processo de utilizar
cifras homofonicas, nas quais cada vogal poderia ser representada por multiplos simbolos
distintos. Esse método também era utilizado em conjunto com a transposi¢ao de letras,

como na Cifra de César. Na tabela 3 observa-se um exemplo de uma cifra homofonica.

Tabela 3 — Exemplo de cifra homofonica

Alfabeto original | A
Alfabeto cifrado | x
X
?

B C D F G
Z @ M AV

= — Wn|m

O

Fonte: Elaborado pela autora.
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Ao longo do tempo, algumas dessas cifras passaram a contar com mais de 500
simbolos diferentes, utilizando diversas representagoes para vogais, consoantes, digrafos
e silabas comuns da lingua. Apesar do esforco, todas estas cifras eram, eventualmente,
quebradas por criptoanalistas da época ou acabavam caindo em desuso devido a alta

dificuldade para memorizar seus padroes.

Com o advento do telégrafo, em 1844, a encriptacao de mensagens tornou-se um to6-
pico importante para o piblico geral. Isso ocorreu porque a mensagem precisa ser lida por
uma terceira pessoa: o operador do telégrafo. Essas necessidades apenas intensificaram-se

com a invenc¢ao do radio.

Durante a Primeira Guerra Mundial, foi utilizada principalmente a cifra ADFGVX
(POULTER; KULP, 2017), que utilizava uma combinagao de técnicas de transposigao e
substituicdo. Essas mensagens cifradas eram comunicadas via rddio, o que as tornava
sujeitas a interceptac¢oes a todo momento. A decriptacao dessas mensagens foi essencial
para a resolucao de muitas batalhas, uma vez que, sabendo onde o inimigo pretendia

atacar, eliminava-se o fator surpresa.

No entanto, a histéria mais marcante envolvendo criptografia do século XX ocorre
durante a Segunda Guerra Mundial, com a maquina de cifragens alema conhecida como
Enigma (SMART, 2016). A méquina, que lembrava uma maquina de escrever, utilizava
uma chave que dependia da configuracdo de montagem, isto é, a ordem e posicao dos
misturadores, conexao dos cabos emparelhando pares de letras no painel frontal e a posi¢ao

do refletor. Por questdes de seguranca, ainda, a chave era trocada apds cada mensagem.

Com os avangos da tecnologia, a criptografia tornou-se um elemento essencial
para a sociedade. Nao mais utilizada apenas em estratégias de guerras, a criptografia esta
atualmente presente desde mensagens enviadas pela internet, como também em transagoes
financeiras e compras on-line. Isso significa que, diferente dos tempos de Julio César, em
que a chave de codificagao poderia ser combinada previamente em um ambiente seguro,
as criptografias modernas precisam compartilhar essa chave em um ambiente inseguro,

que pode estar sujeito a ataques externos.

Uma das grandes limitagoes da criptografia, até entdao, era a crenca de que s
seria possivel utilizar métodos de chave simétricas, ou seja, situagoes em que a chave para

encriptar e decriptar a mensagem fosse a mesma.

Para que a seguranca dessas informacoes fosse alcancada de maneira eficiente,
surgiu a necessidade do que é chamado de "criptografia de chave publica"ou criptografia
assimétrica, um modelo de encriptagao que consiste na utilizacdo de uma chave publica,
conhecida por todos os usuarios do meio, e uma chave privada, que possui tempo com-
putacional inviavel para ser descoberta. Um criptossistema de chave publica deve conter

um esquema publico de encriptagdo E e um esquema privado de decodificacao D, tal que,
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para uma mensagem M,

D(E(M)) = M = E(D(M))

Em seu artigo "New Directions in Cryptography"'(DIFFIE; HELLMAN, 1976),
Whitfield Diffie e Martin Hellman apontam, como solucao desse problema, uma combina-
¢ao de funcao exponencial com aritmética modular, que pode ser denominada como uma
funcao de mao unica. Sua utilizagdo teve inicio na criptografia RSA, criada por Rivest,

Shamir e Adleman (1978), trés pesquisadores do Massachusetts Institute of Technology.

Na cifra RSA, para que Alice e Bob enviem mensagens sem que Eva consiga

intercepta-las, de alguma forma, sdo realizadas as seguintes operagoes:

1. Alice procura pela chave publica de Bob, que esta disponivel para todos os usuarios

do meio.

2. Ela encontra o nimero n, o qual utilizara para cifrar sua mensagem e envia-la para

Bob.

3. A mensagem criptografada chega até Bob, que utiliza sua chave secreta para decifra-

la e ler a mensagem.

Eva, como usuaria do meio, conhece a chave n, mas sera incapaz de decifrar a
mensagem por nao ter conhecimento da chave secreta, pois as operagoes utilizadas para
a codificacdo da mensagem sao feitas de maneira que seja computacionalmente invidvel

encontrar um dos valores a partir do outro.

A teoria que fundamenta a RSA, a qual entraremos em mais detalhes futuramente,
utiliza a multiplicagdo de dois niimeros primos p e ¢ grandes o suficiente que gerem n, e
suas operagcoes serao feitas com os nimeros primos em si, que, mesmo com n conhecido,

serdo desconhecidos. A teoria estabelece que, se um ntimero n tem mais do que 10'6°

digitos e é obtido como produto de dois niimeros primos, cada qual com mais de 107
digitos, entao o tempo computacional para encontrar estes fatores é maior do que a idade

do universo.

Outro modelo de criptografia assimétrica promissor é a Criptografia de Curvas
Elipticas (ou ECC), independentemente proposta por (MILLER, 1986) e (KOBLITZ,
1987). Esta cifragem utiliza da estrutura de grupos abelianos que podem ser gerados
a partir das curvas elipticas. Enquanto a seguranca do modelo RSA é baseada no pro-
blema da fatoracao de inteiros suficientemente grandes, a seguranca da ECC baseia-se no

problema do logaritmo discreto.

A escolha, em certos casos, da utilizagao da ECC, deve-se ao fato de que o problema
da fatoragao de inteiros pode ser resolvido por um algoritmo de tempo subexponencial,

enquanto que o problema do logaritmo discreto demora tempo exponencial completo. Isso
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Figura 1 — Exemplo de curva eliptica utilizada para o Bitcoin (y* = 23 + 7)

Fonte: Elaborado pela autora.

implicard que, para atingir o mesmo nivel de seguranca em ambos os métodos, a ECC

exigira parametros menores.

Devido ao fato de que os sistemas computacionais estdao se tornando cada vez

menores e mais restritos, mas, ao mesmo tempo, possuem uma necessidade maior de

seguranga, a ECC surge como uma alternativa vidvel em certas ocasides. Na tabela 4,

comparamos o comprimento da chave de criptografia necessaria, em bits, para obter a

mesma quantidade de bits de seguranca.

Um valor n de bits de seguranca, neste caso, significa que seriam necessarias 2"

operacoes para quebrar os codigos. Percebe-se que a ECC apresenta maior eficiéncia,

visto que, para obter uma chave com 256 bits de seguranca, precisa de aproximadamente

metade do tamanho de uma chave RSA capaz de fornecer apenas 80 bits de seguranca.

Tabela 4 — Comparagao do comprimento da chave de criptografia (em bits)

(BARKER, 2020)

Bits de seguranga RSA

ECC

80

112
128
192
256

1024
2048
3072
7680
15360

160
224
256
384
512

A ECC utiliza, para sua formulacao, as curvas elipticas. Essas curvas sao descritas
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pela equagao

y? =23 + ax + b,

onde ainda sdo excluidas as situacoes em que 4a3+27b? = 0, a fim de evitar singularidades.
A vantagem na utilizacdo dessas curvas deve-se ao fato de que as curvas elipticas sao

capazes de formar grupos abelianos.

Essas curvas sao aplicadas sobre campos finitos F,, isto é, o conjunto de inteiros
modulo p, onde p é um nimero primo. Dessa forma, as vantagens em sua utilizacao sao

evidenciadas pelas estruturas algébricas que as compoem.

Por fim, a seguranca do modelo sera baseada no problema do logaritmo discreto.
Este problema pode ser explicado como: conhecidos os pontos P e (), encontrar k tal
que @@ = kP, o que pode ser traduzido sobre os campos finitos [F,, para, conhecidos a e b,
desejamos encontrar k tal que b = a* mod p. Desde que se evite curvas supersingulares
e também curvas cuja ordem nao tenha nenhum fator primo grande, nao ¢ conhecido

nenhum algoritmo sub-exponencial que possa quebrar o sistema.
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1 Objetivos

1.1 Objetivos gerais

O presente trabalho tem como objetivo principal estudar a Criptografia de Curvas
Elipticas (ECC), bem como analisar suas vantagens e desvantagens em relagao a outras
técnicas criptograficas amplamente utilizadas, como a Criptografia RSA. Esse objetivo
foi alcangado por meio do estudo de temas como Aritmética e Geometria Algébrica, que

fundamentam a formulacdo matematica desses modelos.

1.2 Objetivos especificos

Buscou-se compreender algoritmos baseados na ECC, como o Diffie-Hellman de
Curvas Elipticas (ECDH) e o Algoritmo de Assinatura Digital de Curvas Elipticas (ECDSA).
Esses algoritmos utilizam a ECC em formato hibrido, incorporando a ela um componente

de chave simétrica.

Para a conclusao do trabalho, estabeleceu-se ainda o objetivo de elaborar um
c6digo em Python exemplificando o uso tanto da Criptografia de Curvas Elipticas quanto
da Criptografia RSA para criptografar e decriptar mensagens, de modo a possibilitar a

comparagao do tempo computacional entre ambas.

O trabalho esta disposto da seguinte forma: o capitulo 2 apresenta conceitos de
Teoria dos Numeros e Aritmética que serdo necessarios para o capitulo 3, que introduz a
Criptografia RSA. Em seguida, o mesmo ocorre nos capitulos 4 e 5, no qual o primeiro
introduz a Algebra necessaria para a compreensao do segundo, que trata-se da Criptografia
de Curvas Elipticas. O capitulo 6 apresenta a implementagdo do que foi estudado em

Python e o capitulo 7 conclui o trabalho.
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2 Teoria dos Niimeros e Aritmética

A Aritmética é conhecida como a parte elementar da Teoria dos Numeros, e teve
como marco inicial a obra Os Elementos, de Euclides, aproximadamente 300 anos a.E.C..
No entanto, ela apenas se tornaria um dos pilares na matemética com os estudos de Pierre

de Fermat (1601-1665) e Leonhard Euler (1707-1783).

Estas dreas sao identificadas pelo estudo das propriedades e relagées que os niime-
ros possuem entre si, e terdo extrema importancia para o estudo da Criptografia RSA, ja

que a mesma necessita da aritmética modular para criptografar suas chaves.

2.1 Teoria dos Nimeros

2.1.1 Divisilibidade

Definicao 2.1.1. Dados a,b € Z. Dizemos que a divide b quando existir algum inteiro
c € Z tal que

b=ax*c

Neste caso, diremos também que a é um divisor ou um fator de b, ou ainda, que b

¢é divisivel por a e ¢ é o quociente.

A notacao para indicar que a divide b é alb, enquanto que, para a nao divide b,
a notagao serd a /[ b. A negacao dessa sentenca indica que nao existe nenhum nimero

inteiro ¢ tal que b = ¢ * a.

Exemplo 2.1.1. 2/6,3|6,5 /6.

Teorema 2.1.1. Se a,b,c € N, com a # 0 sdo tais que alb e alc. Dados z,y € N,
al(xzb 4+ yc), e, se xb > ye, entao al(xb — yc).

A demonstragao pode ser encontrada em (HEFEZ, 2006).

Teorema 2.1.2 (Divisao Euclidiana). Sejam a e b dois niimeros naturais com 0 < a < b.

Existem dois tinicos nimeros naturais r e ¢ tais que:

b=axq+r r<a
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A demonstracao pode ser encontrada em (HEFEZ, 2006).

Exemplo 2.1.2. Vamos encontrar o quociente e o resto da divisao de 22 por 6.

Considere as diferencgas sucessivas:

22-6=16,22-2%x6=10,22-3x6=4<6

Portanto, g =3 er =4.

Definicao 2.1.2. Sejam a,b € Z, nao simultaneamente nulos, o0 maximo divisor comum
entre os numeros inteiros a e b é o maior inteiro positivo d que satisfaz as seguintes

condigoes:

e (i) d é um divisor comum de a e b;

o (ii) Se d' é um divisor comum de a e b, entao d'|d.

Definicao 2.1.3. Sejam a,b € N*. Definimos o conjunto

J(a,b) ={z € N*;Ju,v € N,x = ua — vb}

Teorema 2.1.3. Sejam a,b € N* e seja d = min J(a,b). Temos que d é o mdc de a e b.

Demonstrag¢do. Suponhamos que c¢ divide a e b. Logo, ¢ divide todos os ntimeros

da forma ua — vb, portanto, divide todos os elementos de J(a, b), logo, c|d.

Mostraremos que d divide todos os elementos de J(a,b). Seja x € J(a,b) e,
supomos por absurdo, que d /] z. Assim, pela Divisao Euclidiana, z = dg + r, com
0<r<d.

Como x = ua — vb e d = mb — na, para alguns u,v,m,n € N, segue-se que
r=(u+qn)a—(v+qgm)b € J(a,b). Mas isso é um absurdo, pois d = min J(a,b) e r < d.
Em particular, d|a e d|b.

O

Proposicao 2.1.1. Dois niimeros naturais a e b sdo primos entre si se, e somente se,

existem nimeros naturais m e n tais que na — mb = 1.
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Demonstra¢io. Suponhamos a e b primos entre si. Logo, mdc(a,b) = 1. Como ja
visto, temos que existem n e m tais que na — mb = mdc(a,b) = 1, segue-se a primeira

parte da preposicao.

Reciprocamente, suponhamos que existam ntimeros naturais n e m tais que na —

mb = 1. Se d = mdc(a,b), temos que d|(na — mb), ou seja d|1, e, portanto, d = 1.
[

Teorema 2.1.4. Sejam a, b, c nimeros naturais. Se alb x ¢ e mdc(a,b) = 1, entao alc.

Demonstragio. Se alb * ¢, entdo existe e € N tal que bec = ae. Se mdc(a,b) = 1,

entao, temos que existem m,n € N, tais que na — mb = 1. Multiplicando por ¢, obtemos

¢ = nac — mbc

Mas bc = ae, entdo ¢ = nac — mae = a(nc — ne). Portanto, alc.

2.1.2 Primalidade

Definicao 2.1.4 (Ndimero primo). Um nimero natural maior do que 1 e divisivel apenas

por 1 e por ele mesmo é chamado de niimero primo.

Ocorre da definicao acima que, dados p e ¢ nimeros primos e a um ntimero natural
qualquer, sera verdade que:
1. Se p|q, entdo p = q.
2. Se p fa, entao mdec(p,a) = 1.

A primeira afirmagao surge do fato de que, como p|q e g é primo, s serd possivel

p=1oup=gq. Como p é primo, tem-se que p > 1, da onde sai que p = q.

A segunda afirmagao ocorre pois, se mdc(p,a) = d, entao d|p e d|a. Entao d =1

ou d = p. Mas d # p, pois p fa, do que se pode concluir que mdec(p,a) = 1.

Proposicao 2.1.2. Sejam a,b,p € N*, com p primo. Se p|ab, entdao pla ou p|b.
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Demonstra¢io. Basta provar que, se plab e p fa, entao p|b. Mas, se p fa, entao

mdc(p,a) = 1, e segue que plb.
0

Corolario 2.1.1. Se p,py, ..., p, S30 numeros primos e, se p|p;...p,, entdo p = p; para

algum =1, ....n.

Demonstracao. Usando a proposicao anterior, utilizamos a indugao sobre n e o

fato de que, se p|p;, entdo p = p;.
O

Teorema 2.1.5 (Teorema Fundamental da Aritmética). (GAUSS, 1801) Todo nimero
natural maior do que 1 ou é primo ou se escreve, de modo nico, como um produto de

nimeros primos.

Demonstracio. Se n = 2, o resultado é automaticamente verificado.

Supomos, entao, que este resultado ¢é valido para todo niimero natural menor do
que n, e provaremos que vale para n: se o nimero n é primo, nada temos a demonstrar.

Suponhamos, entao, que n seja composto.

Logo, existem ntimeros naturais n; e ns tais que n = ning, com 1 < ny < n
e 1 < ny < n. Pela hipotese, existem nimeros primos pi,...,p, € qi,...,qs tais que
Ny = pP1...pr € No = (q1...qs. Portanto, n = py...p,q1...qs.

Mostraremos, também, a unicidade da escrita. Suponha que n = py...p, = q1...qs,
onde p; e p; sao numeros primos. Como p;|¢;...qs, pelo corolario anterior, temos que
p1 = ¢; para algum j que, ap6s reordenar ¢;...qs, podemos assumir que seja ¢;. Portanto,
D2...Pr = G2...qs. Como ps...p, < m, a hipdtese de inducao conclui que r = s e os p; e g;

sao iguais a seus pares. 0]

Ordenando os primos em ordem crescente e contabilizando os fatores repetidos,

este resultado também pode ser escrito da seguinte forma:

Teorema 2.1.6. Dado um niimero n € N, n > 1, existem primos p; < ... < p, e aq, ...ai. €

N* univocamente determinados, tais que

a0 «
n=p ..p."

A demonstracao pode ser encontrada em (HEFEZ, 2006).
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Teorema 2.1.7. Existem infinitos ntimeros primos.

Demonstrag¢ao. Suponha que exista apenas um numero finito de niimeros primos
b1, .--Pr-

Considere o niimero natural n = pyps...p,+1. O niimero n possui um fator primo p

que, portanto, deve ser um dos py, ..., p, €, por consequéncia, p divide o produto pips...p;.

Mas isso implica que p divide 1. Absurdo!

Teorema 2.1.8 (Lema de Eratéstenes). Se um nimero inteiro n > 1 nao ¢ divisivel por

nenhum primo p tal que p? < n, entdo ele é primo.

Demonstragcao. Por absurdo, suponhamos que n nao seja divisivel por nenhum

ndmero primo p tal que p? < n e que n nao seja primo.

Se n for composto, segue que existe algum primo ¢, o menor niimero primo que
divide n. Isto é, n = ¢ * ny para algum n; € Z com ¢ < n;, pois ¢ é o menor primo que
? 9

divide n.

Ao multiplicar a desigualdade por ¢, segue dai que ¢> < qn; = n. Logo, n é

divisivel por um nimero primo ¢ tal que ¢*> < n. Absurdo!

OJ

Baseado neste ultimo Lema, foi criado o Crivo de Eratéstenes, um método para
descobrir todos os nimeros primos até um certo nimero natural n. Este método consiste
em, partindo do nimero 2, excluir todos os valores da tabela que sejam multiplos de
2, depois os multiplos de 3, e assim por diante. De acordo com o Lema, apenas sera

necessario fazer este processo até o valor de /n.

Na tabela 5, obtivemos o Crivo de Eratéstenes para n = 120. Para ela, apenas foi
necessario testar os valores até \/n = /120, ou seja, até 7, visto que o préximo nimero
primo, 11, ultrapassa a raiz quadrada, e os valores entre 7 e 11 ja estariam previamente

excluidos.

2.2 Aritmética Modular

Definicao 2.2.1. Dizemos que dois niimeros inteiros a e b sdo congruentes modulo n se

os restos de sua divisao euclidiana de a e b por n sao iguais. Escrevemos isso como:

a = b(mod n)
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Tabela 5 — Crivo de Eratéstenes para n = 120

2 3 4 5 6 7 B 9 w |11 |2
13 | M | B [ |17 |8 |19 |20 |24 (27 |23 |24
25 |26 |27 |28 |29 |30 |31 |32 |33 |34 |35 |36
37 (38 139 |40 |41 |47 |43 |44 |45 |46 |47 | 4%
49 |50 |51 |52 |53 |54 |55 |56 | 5T |58 |59 | 60
61 |62 |63 |64 |65 |66 |67 |68 |69 |A |71 |2
3|\ |\ | | 8|79 |80 (81 |82 |83 |34
85 (86 |87 [88 |89 [90 |91 (92 |98 |94 |95 | 96
97 |98 |99 | 160 | 101 | 162 | 103 | 1o4 | 165 | 166 | 107 | 108
109 | 10 | 11 | 42 | 113 | 14 | 45 | 46 | L7 | A8 | 119 | 120

Propriedades da Congruéncia Modular:

1. Todo ntimero é congruente moédulo n a si proprio, ou seja, a = a mod n;

2. Se a = bmod n, entdo b = a mod n;

3. Sea=bmodn eb=cmodn, entdo a = ¢ mod n;

4. Sea=d modneb=0b modn,entdoa+b=a +b modneaxb=a %V modn;

5. Em particular, a* = (a’)* mod n, para qualquer k > 0.

Proposicao 2.2.1. Suponha a,b € N tais que b > a. Tem-se que a = b mod m se, e

somente se, m|b — a.

Demonstracao. Pela Divisao Euclidiana, temos que a = mq + r, com r < m e

b=mq + ', com r" <m'. Logo,

b—a=

onde ' —r < m our —r’ < m. Portanto, a = b mod m se, e somente se, r = r

que equivale a dizer que m|b — a.

m(q¢ —q) + (' =),

m(q' —q) — (r' =),

ser’ >r

ser >1r'

/

, 0
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Defini¢ao 2.2.2 (Sistema Completo de Residuos). Chamamos de sistema completo de
residuos moédulo m todo conjunto de ntimeros naturais cujos restos pela divisao por m
sao os nameros 0,1,...,m — 1, sem repeticoes e numa ordem qualquer. Assim, sistema

completo de residuos médulo m possui m elementos.

Proposicao 2.2.2. Sejam a,m € N, com m > 1. A congruéncia aX = 1 mod n possui
uma solu¢do xy se, e somente se, mdc(a,m) = 1. Além disso, x é uma solucdo da

congruéncia se, e somente se, x = xo mod m.

Demonstra¢io. A congruéncia terd solugao x, se, e somente se, m|azg — 1, o que
equivale a dizer que a equacgado diofantina aX — mY = 1 possui solugdo em nimeros

naturais. Isso ocorre se, e somente se, mdc(a, m) = 1.

Por outro lado, se zy e = sao equagoes da congruéncia aX = 1 mod n, entao
axr = axg mod m, o que implica que x = xyo mod m. Se xy é solugao da congruéncia e

x = xo mod m, entao r também ¢ solugao da congruéncia, pois

ax = axg =1 modm

Se considerarmos que duas solugoes congruentes médulo m sao, essencialmente, a

mesma, temos ainda a unicidade da solucao da congruéncia a X = 1 mod n.

O

2.2.1 Funcdo ¢(m) de Euler

Definigao 2.2.3. Designaremos por ¢(m) (ou funcao phi de Euler) o niimero de elementos
de um sistema reduzido de residuos modulo m que corresponde a quantidade de niimeros

naturais entre 0 e n — 1 que sao primos com m.

¢:N* =N

Note que ¢(m) < m — 1, sendo que ¢(m) =m — 1 < m é primo.

Teorema 2.2.1 (Teorema de Euler). Sejam m,a € Z com m > 1 e mdc(a,m) = 1.
Entao,
a®™ =1 (mod m)
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Demonstragdo. Seja ry, ..., T¢(m) um sistema reduzido de residuos médulo m. Logo,

a*T1,..., 0% Ty também formam um sistema reduzido de residuos médulo m. Assim,
é(m) = = d
a®"r K Ty kL K Ty = AT K AT K . K QT () = T1 K Tk Lk Ty TOd M

Como mde(ry * g % ... % Tymy, m) = 1, a®™ =1 (mod n). O

Teorema 2.2.2 (Pequeno Teorema de de Fermat). Sejam a € Z e p um ntimero primo

tais mdc(a,p) = 1. Se p fa, entdo:
a?~t =1 (mod p)

Demonstracao. Basta utilizar o Teorema de Euler e notar que, p sendo primo,
¢(p) =p—1. O

Teorema 2.2.3 (Teorema do Resto Chinés). (HEFEZ, 2006) O sistema
X = ¢; mod ny

X = ¢y mod ny

X = ¢, mod n,,

onde mdc(n;,n;) = 1, para todo par n;,n; com ¢ # j, possui uma unica solugao médulo

N =nq xng * ... xn,. Tal solucdo pode ser obtida desta forma:
=Ny *xyrxc;+ ...+ N, xy, x ¢,

onde N; = nﬁ e y; € a solugao de N;Y =1 mod n;, 1 =1,...,r.

Demonstra¢io. (=) Inicialmente, provamos que x é uma solugao simultdnea do

sistema. De fato, como n;|Nj, se i # j e N;y; = 1 mod n;, segue-se que
xr=Ny*xyy*xc1+ ...+ N, xy. xc, = N; xy; *x ¢; = ¢; mod n,;.
(<) Por outro lado, se ' é outra solugao do sistema, entao

x =2 modn;,Vi,i=1,..r.

Como mdc(n;,nj) = 1, para i # j, segue-se que [ny,...,n,| = ny *...xn, = N e,

consequentemente, temos que x = ' mod N.
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Proposi¢ao 2.2.3. Sejam m,m’ € N, com m > 1, m’ > 1 e mdc(m,m’) =1,
¢(m*m') = ¢(m) * (m’)

Demonstracao. Consideramos a seguinte tabela formada pelos ntimeros naturais

de 1 até m xm':

1 2 ..k ceoom’
m’ + 1 m’+2 .. m'+k e 2m’
(m-1)m’+1 (m-1)m’+2 .. (m-1)m’+k .. mm’

Como mde(t,m = m') = 1 se, e somente se, mdc(t,m) = mdec(t,m’) = 1, para
calcular ¢(m x m'), determinamos os nimeros da tabela que sdo simultaneamente primos

com m e com m/'.

Se o primeiro elemento da coluna nao for primo com m’, todos os elementos nao sao.
Dessa forma, os elementos primos com m’ estao obrigatoriamente nas colunas restantes,

. , ,
que sao, em nimero, ¢(m’).
Vejamos quais sao os elementos primos com m destas colunas.

Como mdec(m, m') = 1, a sequéncia
k,m'+k,....(m—1)m'+k

forma um sistema completo de residuos médulo m, e, portanto, ¢(m) desses elementos

sao primos com m.

Portanto, o nimero de elementos simultaneamente primos com m’ e m é ¢(m) *
¢(m').
O

Lema 2.2.1. Se p é um nimero primo e r é um numero natural, tem-se que
¢(pr) — pr _prfl — pr(l o 7).

Demonstracao. De 1 até p”, temos p" ntimeros naturais. Excluiremos destes os

que nao forem primos com p", ou seja, todos os multiplos de p, que sdo p, 2p, ..., p" " p, de

T r—1

modo que sdo exatamente p"~! elementos. Portanto, ¢(p") = p" — p

O
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Teorema 2.2.4. Se m = pi"...p%" é a decomposicdo de m em fatores primos, entao

a1 pom(]_ 1y (q_ L1
o(m) = pit..pon(1 pl)...(l pn),

que também pode ser escrito como

o(m) = pitpy H(pr — 1) (pn — 1).

Demonstracao. O resultado decorre do Lema acima.
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3 Critografia RSA

Como ja visto anteriormente, com a grande utilizacdo de meios inseguros para
a comunicacao nos dias de hoje, urge a necessidade de que estas trocas de mensagem
possuam duas propriedades importantes: a privacidade do contetdo e a possibilidade de

assina-lo de alguma forma, para que exista uma comprovagao do autor real da mensagem.

Para isso, Whitfield Diffie e Martin Hellman desenvolveram, como solugao para
os problemas que a criptografia enfrentava ha séculos, a chamada "Criptografia de Chave
Publica". Esse método consiste na utilizagao de duas chaves diferentes: uma chave ptublica,
conhecida por todos do meio; e uma chave privada, conhecida apenas pelo destinatario
da mensagem. (HELLMAN, 1978)

A Criptografia RSA (RIVEST; SHAMIR; ADLEMAN, 1978), datada dos anos
70, ¢ um dos primeiros métodos de chave piblica amplamente utilizados. Ela utiliza
uma combinacao de fungdo exponencial com aritmética modular, que é conhecida como
uma funcao de méao tunica, de tal modo que torna-se computacionalmente inviavel tentar

decriptar a mensagem sem ter a chave privada.

Alice Bob
Eva

Chave publica Chave privada

de Bob de Bob
— —
— —

—_— —_—
Encriptacao Decriptacao
Mensagem original Mensagem encriptada Mensagem original

Figura 2 — Exemplo de encriptacao de mensagem com a criptografia de chave publica

Fonte: Elaborado pela autora.

Em uma criptografia de chave ptblica, ao enviar uma mensagem para Bob, Alice

utiliza a chave publica dele para encriptar o conteido, de modo que, caso a mensagem seja
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interceptada por Eva, ela nao sera capaz de compreendé-la. Em seguida, ocorre o processo

de decriptacao, no qual Bob utiliza sua chave privada para ler a mensagem verdadeira.

3.1 Método de funcionamento da RSA

Tomando uma mensagem M, o RSA utiliza uma chave publica (e, n) e uma chave
privada d para realizar os calculos necessarios. Abaixo, serda brevemente explicado como

é dado seu funcionamento.

1. Inicialmente, a mensagem a ser enviada é representada como um inteiro entre 0 e
n — 1 (caso necessario, é preciso quebrar a mensagem em blocos), tomando n como

o produto de dois primos p e q.

2. A partir deste nimero, obteremos a fungao phi de Euler, ®(n) = (p —1)(¢ — 1), do

qual extrairemos a outra chave publica e e a chave privada d.

3. Estes valores serao obtidos tomando d como um nimero coprimo de ®(n), e e de

modo que ed = 1 mod ®(n).

4. O resultado criptografado que sera enviado para o segundo usuario sera C = M*®

mod n.

5. Para decifrar a mensagem, ele devera, entao, realizar a operacao com a chave privada
M = C% mod n.

Exemplo 3.1.1. Tomando n como o produto dos primos p = 11 e ¢ = 17, obteremos
n=11%x17= 187

e, por sua vez,
®(n) = (11— 1) * (17 — 1) = 160.

Podemos utilizar d = 7, visto que mdc(7,160) = 1, e, portanto d e ®(n) sdo coprimos.

Deste modo, ao calcular o valor de e, obteremos e = 23, pois
ed ="Tx%23 =161 =1 mod 160.

Entao, encontramos que n = 187, d = 7,e = 23.

Supondo que a mensagem a ser encriptada seja M = 8, teremos
C = M° mod n = 8% mod 187

= 590295810358705651712 mod 187 = 83 mod 187.
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Logo, o destinatario recebera C = 83.

Apos isso, sera utilizado o valor privado de d = 7 para decriptar a mensagem, e
teremos
M = C% mod n = 83" mod 187

= 27136050989627 mod 187 = 8 mod 187

Deste modo, o destinatario finalmente recebera a mensagem original M = 8.

Exemplo 3.1.2. E claro que, comumente, sera necessario também encriptar mensagens
mais longas, bem como palavras ou textos. Como exemplo deste processo para uma
mensagem maior, iremos criptografar a palavva MATEMATICA. Para a simplificacao

do processo, consideraremos todas as letras em maitsculo, sem a presenca de acentos.

Para isso, serd necessario, inicialmente, converter todas as letras em nimeros.

Utilizaremos a tabela 6 para isso.

Perceba que os valores deverao comegar com A = 10, para haver clareza sobre
os blocos que representam as letras. Devido ao fato de que sera feito uma concatenacao
dos blocos em seguida, caso resolvéssemos iniciar por A = 1,B = 2,...,Z = 26, ao
encontrarmos a mensagem M = 12, ndo saberiamos dizer se ela corresponde aos valores

de A=1e B =2 ou apenas a um unico bloco L = 12.

Tabela 6 — Tabela de Conversao

A|/B|C|D|E|F|G|H|I |J K|L M
1011|1213 (14| 15|16 | 17 | 18 | 19 | 20 | 21 | 22

NIOJP[Q[RI[S [T|U [V [W[X][|Y |Z
23 12425 | 26|27 2829|3031 |32]3334]35

Assim, convertendo a mensagem letra a letra, obtemos:

Il I I
[\ =
S o N

I
N
NS

= TS~ T RS-
I [
= -

|
Y
R
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1 =18
C=12
A=10

Portanto, a mensagem a ser encriptada serd a concatenagao M = 22102914221029181210.

Utilizando, agora, p = 17 e ¢ = 19, teremos n = px q = 17 x 19 = 323, e, ainda,

dpn)=(p—1)x(¢g—1) =16 % 18 = 288.

Entao, iniciamos o processo, quebrando a mensagem em blocos, de modo que, em
cada bloco, permaneca um valor menor do que n = 323. Assim,

My | My | My | My | Ms | Mg | My
221 | 0291 [ 42 | 210 | 291 | 81 | 210

Fonte: Elaborado pela autora.

Criptografamos cada um dos blocos pela formula C; = (M;)° mod n. Neste caso,
utilizaremos e = 5.

C, = 221° mod 323 = 255 mod 323
Cy = 291° mod 323 = 100 mod 323
Cs = 42° mod 323 = 264 mod 323
C, = 210° mod 323 = 58 mod 323
Cs = 291° mod 323 = 100 mod 323
Cs = 81° mod 323 = 47 mod 323

C = 210° mod 323 = 58 mod 323

De modo que a mensagem encriptada sera 255.100.264.58.100.47.58.

A descriptografia sera feita a partir da chave privada d, que podemos calcular em
funcao dos outros valores que possuimos.

Como e e d precisam ser, necessariamente, inversos multiplicativos médulo ¢(n),
encontramos que d = 173, pois

D+ 173 =865 = 3 288 + 1,
ou seja,

ed = 1 mod 288.

Para cada bloco criptografado, fazemos M; = (C;)¢ mod n.
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M; = 255'™ mod 323 = 221 mod 323
My = 100'™ mod 323 = 291 mod 323
Ms = 264'™ mod 323 = 42 mod 323
M, = 58" mod 323 = 210 mod 323
M5 = 100" mod 323 = 291 mod 323
Mg = 47" mod 323 = 81 mod 323

M; = 581 mod 323 = 210 mod 323

Voltamos, assim, a mensagem original M = 221.291.42.210.291.81.210. A partir
daqui, é necessario apenas reorganizar a mensagem de dois em dois algarismos e conferir

na tabela para verificar que retornamos a mensagem MATEMATICA.

3.2 Fundamentacao para seu funcionamento

Mostraremos que

D(E(M)) = M = E(D(M))

Neste caso, seja a um bloco da mensagem, mostraremos que

(a®)? = (a®) = a mod n.
Uma das propriedades da potenciacao transformara estes expoentes em um pro-
duto, que serd comutativo. Portanto, basta mostrar
(a®)? = a mod n.

Para isso, utilizaremos a propriedade

a=bmodp
a=0bmod pqg &

a=bmod q

Como sabemos que

ed =1 mod ¢(n)
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podemos escrever

ed=k(p—1)(¢g—1)+ 1,para algum k natural.

Provaremos, entao que

PP~V = 4 mod pg,

que sera equivalente a provar que

1. a*P=D=D+1 = ¢ mod p

2. "D+ = ¢ mod g

Demonstragio (1).
Se pla, entdao 0 = a = a*P~DE@=D+ ymod p.
Se p nao divide a, pelo Pequeno Teorema de Fermat, temos

a” ' =1 modp

entao,

[aP~1]Fa=D) = 1%a=D = 1 mod p
Podemos multiplicar a equivaléncia por a, obtendo

aFP=DE=D+ = 4 mod p

A demonstragao (2) serd anéloga.
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4 Algebra

O seguinte capitulo foi baseado em Domingues e Iezzi (2003), e trata-se da funda-

mentacao algébrica necesséria para os proximos resultados.

4.1 Algebra

4.1.1 Grupos

Definicao 4.1.1. Seja » uma operacao definida em um conjunto GG. Dizemos que o par

(G, %) é um grupo se, e somente se
e O conjunto G é fechado sob a operacao, isto é, Vg,h € G,gxh € G
« A operacdo x é associativa, isto é, Vg, h,k € G,(gxh)xk = g* (hx k)

« Existe um elemento identidade e € G para x, isto é, de € G,Vg € G,exg = g*xe =g

Para todo elemento g € G existe um elemento inverso h € G tal que gxh = hxg =e¢

Defini¢ao 4.1.2. Seja (G, ) um grupo. Dizemos que G é grupo abeliano se x for uma

operacao comutativa em G, isto é, se Vg, h € G,g*h = h*g.

Proposicao 4.1.1. Se (G, *) é um grupo, entao

e 0 elemento neutro é Unico;
e 0 elemento inverso é tnico.

Exemplo 4.1.1. (Q*, *): O conjunto dos nimeros racionais com a operagao de multipli-
cagao usual é um grupo abeliano, pois vale o axioma da comutatividade, com o elemento
neutro 1, e o inverso de um elemento a € Q* é a~! em Q*. Como a operacdo nesse
grupo é a multiplicagdo, o chamamos de grupo multiplicativo. Da mesma forma, (Q,+)

¢ chamado de grupo aditivo.

Definigao 4.1.3. A ordem de um grupo é o nimero de elementos do conjunto G. Deno-
tamos por |G|. G pode ser um grupo de ordem infinita, caso G seja um grupo com um

numero infinito de elementos.
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4.1.2 Anéis

Definig¢ao 4.1.4. Um conjunto A com as operagoes de adigao (+) e multiplicagdo (x) é

um anel se:

1. (A,4) é um grupo abeliano, com o elemento neutro 0 € A e, para todo a € A, o

elemento inverso —a € A.
2. (A, *) é um semigrupo, ou seja, em A valem:

e Fechamento: Va,b € A,axb € A.

 Associatividade: Ya,b,c € A;a* (bxc) = (a*b) *c.
3. A operacao x é distributiva em relacao a 4+, ou seja, tomando quaisquer a,b,c € A,
(a+b)xc=axc+bxc

ax(b+c)=axb+axc

Definicao 4.1.5. Se além das propriedades citadas anteriormente, A também satisfazer

as seguintes:

» Existir elemento neutro na multiplicacao, ou seja 91 € A;Va € A,ax1=1%a = a.

o A multiplicacao ser uma operacao comutativa, ou seja, Va,b € A,axb="bxa

entao, A é um anel comutativo com identidade.

Definicao 4.1.6. Para todo inteiro n > 1, definimos como anel das classes de resto

modulo m, o conjunto
Z, =A{0,1,....,n—1}

em relacao as operacoes

a+b=a-+baxb=ab.
O zero neste anel serd a classe 0, enquanto que o oposto de um elemento a € Z,
¢é a classe m — a.

Definicao 4.1.7. Seja A um anel comutativo com unidade. Se, para este anel, vale a lei

do anulamento do produto, ou seja, se uma igualdade do tipo
ab =104

em que a,b € A s6 for possivel para a = 04 ou b = 04, entdo se diz que A é um anel de

integridade ou dominio.
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Em um anel comutativo A em que nao é verificada a lei do cancelamento, ou seja,
ha pelo menos um par de elementos a,b # 0;ab = 04, diz-se que a e b sdo divisores

proéprios do zero do anel.

Proposicao 4.1.2. Um anel de classes de restos Z,, é anel de integridade se, e somente

se, n é um numero primo.

Demonstra¢io. (=) Suponha n composto, entdo podemos encontrar inteiros a, b
tal que 0 < a,b < m e m = ab. Portanto, a,b € Z,,a,b # 0 e ab = m = 0, que
corresponde ao zero do anel, o que contraria a hipdtese.

(«=) Sabemos que Z,, é um anel comutativo com unidade, qualquer que seja m > 1.
Suponhamos que @ * b = ab = 0 para algum par de elementos @,b € Z,. Portanto,
ab = nq,q € 7Z, logo, n|ab. Mas, como n é primo, por hipétese, entdo n|a ou n|b. Mas
essas relacdes, em termos de classe de equivaléncia, se traduzem por @ = 0 ou b = 0.

Ou seja, se n é primo, Z, nao possui divisores préprios do zero. (DOMINGUES; IEZZI,
2003) O

4.1.3 Corpos

Definigao 4.1.8. Seja A um anel comutativo com identidade. Dizemos que a € A* é
inversivel se existe a™! € A, tal que
axal=alxa=1
Se para todo a € A existir a™!, dizemos que A é um corpo.
Teorema 4.1.1. Temos que a € Z, ¢é inversivel para a multiplicacao se, e somente se,

mdc(a,n) = 1.

Demonstracao. Suponha que n e 1 < a < n sdo inteiros que possuem um fator
primo em comum 1 < p < n. Podemos escrever n = p*xcea =px*xe. Como 1 < p < n,
entao ¢ = % também satisfaz 1 < ¢ < n. Por sua vez, como 1 < a < n por hipdtese, temos

que nem ¢, nem a sao congruentes a zero médulo n. No entanto,
cka=cx*xpxemodn.

Porém, n = c* p, entdao ¢ * p = n = 0 mod n, de onde sai que

cxa=cxkxpx*xe=0modn. (4.1)

Supondo que a realmente possua um inverso a’ médulo n, terfamos que a x a’ =

1 mod n. Multiplicando ambos os membros por ¢, obtemos ¢ (a *a’) = ¢ mod n, ou seja,

(c*a)*a =cmodn. (4.2)
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Porém, por 4.1, ¢ x a = 0 mod n, de modo que (c*a)*a = 0% a’ = 0 mod n.
Comparando com a equagao 4.2, obtemos que ¢ = 0 mod n, ou seja, n divide c. Isto é

um absurdo, visto que, por hipdtese, 1 < ¢ < n. Portanto, a nao possui inverso moédulo
n. 0

Teorema 4.1.2. O anel Z, é um corpo se, e somente se, n é primo.

Demonstracio. Como ja foi demonstrado, se n é primo, entdo, Z, é um anel de

integridade. Como Z,, é finito, asseguramos que 7Z,, é um corpo. O

4.2 Geometria Algébrica

Para este trabalho, utilizaremos o conceito de curvas elipticas da geometria al-

gébrica, que possuem aplicagdoes na criptografia quando definidas sobre corpos finitos.

(77)

Definigao 4.2.1. Seja K um corpo (R, Q, C ou F,, um corpo finito de ¢ = p” elementos,
onde p é primo e r € ZT), com caracteristica diferente de 2 e 3, e seja X3 +aX + b (onde
a,b € K), um polinébmio ctbico sem raizes multiplas. Uma curva eliptica sobre K é o

conjunto de pontos (x,y) € K? que satisfazem:

v =23 +ax+b (4.3)
junto de um elemento chamado ponto no infinito, que pode ser denotado por O.

Observagao. Seja F(x,y) = 0 uma equagao implicita que define uma curva eliptica

e que possui y e x como variaveis desta funcao em 4.3, isto é,

3

F(l’,y):yQ—LE —CLZIZ'—b,

entdo, um ponto (z,y) na curva é chamado "nao singular'se o gradiente VF' é nao nulo
neste ponto.

Pode-se mostrar que a condigdo para que os polindmios ciibicos a direita de 4.3
nao tenham raizes multiplas é equivalente a dizer que todos os pontos na curva sao nao

singulares.

4.2.1 Curvas Elipticas sobre os Nimeros Reais

Mostraremos que o conjunto de pontos de uma curva eliptica junto do ponto no
infinito O forma um grupo abeliano, bastando definir o ponto no infinito e a soma de dois

pontos deste grupo sobre um corpo.(FLOSE, 2011)

Por definicdo, o ponto no infinito é a identidade do grupo.
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5 —ar—bcom K =R, e

Definigio 4.2.2. Seja E uma curva eliptica F(z,y) = y* —
sejam P e () dois pontos em E. Define-se o oposto de P e a soma P + () de acordo com

as seguintes regras:

1. Se P é um ponto no infinito, define-se —P como O e P + () como @), ou seja,

O serve como identidade aditiva do grupo de pontos.
Para as proximas regras, supomos que nem P e nem () sdo pontos no infinito.

2. O oposto —P é dado por —(z,y) = (x, —y), ou seja, a mesma coordenada x e
o oposto da coordenada y de P. E possivel perceber que P e —P pertencerao simultane-

amente a curva 4.3.

3. Se P e @ tém diferentes coordenadas em x, a reta [ = P() intercepta a curva

em mais um ponto R. Define-se, entao, P + () como —R, isto é, a imagem simétrica em

/

relacao ao eixo = deste terceiro ponto.

R

QOPOSTO

-2

Figura3 - P+Q = —R

Fonte: Elaborado pela autora.

4. Para o caso anterior, caso a reta seja tangente a curva em P (ou @), tomamos
R =P (ou R = Q). Deste modo, teremos P+ @Q = —P (ou P+ Q = —Q).

5. Se (Q = —P, entdao, P + () é definido como o ponto no infinito O.

6. Se P = (@, entao, seja [ a reta tangente a curva em P e seja R o tnico outro
ponto de intersecao de [ com a curva. Definimos P + () = —R. Se P é um ponto de

inflexao, ou seja, [ encontra £ em um unico ponto, R sera igual a O.

Deste modo, percebemos que esta operacdao de soma é fechada em relagdo ao
conjunto dos pontos de F unidos ao ponto O. Além disso, mostramos que existe o

elemento neutro O e o elemento simétrico —P,VP € F.

A demonstracgao da associatividade pode ser encontrada em Meireles (2020).
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\‘B@POSTO

1 2
N
1

Figura 4 — Soma para o caso em que a reta é tangente a ()

-2

Fonte: Elaborado pela autora.

./

i 2

Q

N\

Figura 5 — Soma paraocaso P+ Q=P — P =0

Fonte: Elaborado pela autora.

4.2.2 Curvas Elipticas sobre Corpos Finitos

Para a Criptografia de Curvas Elipticas, utilizaremos os conceitos vistos anterior-

mente, porém aplicados em corpos finitos.

Seja [F, um corpo finito, com p primo. Tomando uma curva eliptica £ sobre este
corpo, caso esta possua uma quantidade finita de pares (z,y) com z,y € F,, o corpo
E(F,) é finito.

Exemplo 4.2.1. Seja E a curva y*> = 22 + x + 1 sobre F5. Contaremos os pontos em E.

Inicialmente, faremos uma lista com todos os possiveis valores para x, considerando
que estamos no corpo F5. Em seguida, calculamos z®+x+1 mod 5 e suas raizes quadradas
y dentro de Fy. Adicionaremos, ainda, o elemento neutro (o ponto no infinito). Isso nos

dard os pontos em F.
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Figura 6 — Caso em que P é ponto de inflexao

2

Fonte: Elaborado pela autora.

/

2

ROF'OSTO

-2

Figura 7 — Soma para o caso P+ () = 2P = —R

Fonte: Elaborado pela autora.

Logo, como pode ser visualizado na tabela 7, E(F5) é um corpo finito de ordem 9.

Como outro exemplo, computaremos (3,1)+(2,4) em E. A inclinagao da reta que

passara por estes pontos é dada por

4—1
ﬂ =2 mod 5,
e, entdo, a reta sera
y=2(x—3)+1=2x—5=2xmod 5.
Substituindo em y? = 23 + z + 1, temos 2% — 42> + 2 +1 = 0.

Pela propriedade do coeficiente do z2, sabemos que as raizes somam 4. No entanto
) )

ja conhecemos as raizes 3 e 2, entao, sabemos que a raiz restante é r = 4.
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Tabela 7 — Pontos em E(F5) (MEIRELES, 2020)

S+ x+1mod5 y  Pontos

1 (
3 -
1 +1
1 (
4 (

84;031\3»—0:%

Como y = 2x, temos que y = 3. Refletindo através do eixo x, temos que

(3,1)+(2,4) = (4,-3) = (4,2).
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5 Criptografia de Curvas Elipticas

5.1 Meétodo de funcionamento da ECC

5.1.1 Multiplicacao de pontos

Sabendo que a curva eliptica E é um grupo aditivo, as operacoes que utilizaremos
para a nossa 'funcdo de mao unica'nao serao exponenciais, como na Criptografia RSA,

mas sim, multiplicativas.

Neste caso, a analogia de elevar para a k-ésima poténcia em I, é o mesmo que

multiplicar um ponto P € E por um inteiro k.

Esta multiplicacao, no entanto, nao ¢ feita somando o ponto a si mesmo um niimero
k de vezes, mas sim, modificando a operagdo para que apenas seja necessario realizar

"dobragens'do ponto, bem como algumas adigoes.

Exemplo 5.1.1. Para encontrar 100P, nao é necessario realizar 100 operacoes, pois é

possivel escrever

100P = 2(50P)
100P = 2(2P + 48P)
100P = 2(2P + 2(24P))
100P = 2(2P + 2(2(12P)))
100P = 2(2P 4 2(2(2(6P))))
100P = 2(2P + 2(2(2(2(3P)))))
100P = 2(2P + 2(2(2(2(2P + P)))))
100P = 2(2(P + 2(2(2(P + 2P)))))

Portanto, apenas serd necessario realizar 6 multiplicacoes e 2 adi¢oes de pontos

para encontrarmos o valor de 100P.

5.1.2 Escolhendo os parametros

Os parametros escolhidos para a implementacao da ECC sao:

« A equagao (ou seja, os valores para a e b);
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e O valor p do corpo, que devera ser um niimero primo;
« O ponto base para os calculos;

» A ordem do ponto base (que serd uma fungao dos outros pardmetros, e é recomen-

dével que seja preferencialmente grande).

Lembramos que, a chave ptublica, neste caso, serd a multiplicacao entre o ponto

base e a chave privada.

Exemplo 5.1.2 (Bitcoin). Uma das mais conhecidas aplicagoes atuais da ECC é o Bit-
coin, uma criptomoeda que utiliza a criptografia para controlar o registro de transacoes da
unidade monetdria, por meio da atribui¢ao de assinaturas (ULRICH, 2014). Deste modo,
torna-se uma moeda independente, que nao necessita de bancos ou outras institui¢oes

para seu funcionamento.

O Bitcoin utiliza nimeros grandes para garantir a seguranca de suas transacoes,

bem como todas as aplicacoes reais da Criptografia de Curvas Elipticas.

A selecao de pardmetros para o Bitcoin é conhecida como secp256k1, e os pardme-

tros utilizados sao:

o Equacdo: y? =23 +7

o p=2%6_23_99 98 97 96 9% 1= FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFE FFFFFFFEF FFFFFFFE FFFFFC2F

« Ponto base: 04 T9BE667E FODCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
59F2815B 16F81798 483ADAT7 26 A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419
9C47DOSF FB10D4B8

e Ordem: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B
BFD25E8C D0364141

Perceba como, mesmo todos os valores utilizados para a criptografia que segura
o Bitcoin sendo de publico acesso, a criptomoeda consegue manter sua seguranca pela

complexidade em conseguir "quebrar'o c6digo com forca bruta.

Na ECDSA, a chave privada é escolhida aleatoriamente entre o nimero 1 e a ordem.
No contexto de corpos finitos, existem algumas equacoes que podem ser utilizadas para

representar a soma de dois pontos e a duplicagao de um ponto.

Para a soma R = P + @, com P = (P,,P)) e Q = (Q,,Q,), R = (R, R,) pode

ser definida como
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—15

Figura 8 — Curva utilizada para a execugao do Bitcoin

Fonte: Elaborado pela autora.

— Qy_Py

Rac:C2_Px_Qx
Ry:c(Pm—Rm)—Py

C

Além disso, para a duplicagdo do ponto P para encontrar R, temos

P 3P2+a
2P,
_ 2
R,=c —2P,

R,=c(P,—R,)— P

Yy

Exemplo 5.1.3. Queremos encontrar a chave publica que corresponde aos seguintes

parametros:

o Equacdo: y?> = 2%+ 7, ou seja, a = 0,b=7

e p=067

Ponto base: (2,22)

Ordem: 79

Chave privada: 2

Como temos uma chave privada de valor 2, tudo o que precisaremos fazer é duplicar

o valor de (2,22), para encontrar o ponto correspondente.
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Primeiro, encontramos o valor de c:

32240
T 9w
3x4
44

12
c= ol mod 67

mod 67

mod 67

C =

Como, no corpo F 4, temos que 441 = 32, obtemos:

c =12 % 32 mod 67
¢ = 384 mod 67
c=49

Com o valor de ¢, agora, encontraremos as coordenadas de R:

R, = (49% — 2% 2) mod 67
R, = (2401 — 4) mod 67
R, = 2397 mod 67
R, =52

R, = (49 % (2 — 52) — 22) mod 67
R, = (49 % (—50) — 22) mod 67
R, = (—2450 — 22) mod 67
R, = —2472mod67
R,=7

Portanto, o valor correspondente a chave publica sera o ponto (52, 7).

5.1.3 Assinatura

O processo de assinatura também é parte fundamental dos criptossistemas mencio-
nados. E a partir dele que, além de um destinatario da mensagem conseguir interpreta-la,

também conseguira comprovar quem foi o remetente original da mesma.

Tomando G como o ponto base, n como a sua ordem, z a mensagem a ser assinada
e d a chave privada, a escolha para o par (r,s) que corresponde a assinatura é dada da

seguinte forma:
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1. Escolha um inteiro k entre 1 e n — 1

2. Calcule o ponto (z,y) = k*xG

3. Encontre r = x mod n. Se r = 0, retorne ao passo 1.

4. Encontre s = k71(z +r % d) mod n. Se s = 0, retorne ao passo 1.

5. A assinatura sera o par (r,s).

Com a mensagem devidamente assinada, precisaremos de um método para com-
provar se a assinatura ¢ realmente valida, pois esta poderia ter sido forjada por algum

invasor do meio.

Para verificarmos, utilizamos os seguintes passos:

1. Verifique que r e s estao entre 1 e n — 1
2. Calcule w = s~ mod n

3. Calcule u = z xw mod n

4. Calcule v = r *xw mod n

5. Calcule (z,y) = uG + vP4

6. Verifique que r = x mod n. A assinatura serd invalida se nao for.

Exemplo 5.1.4. O dado que assinaremos serd z = 17. Nosso ponto base serd G = (2,22)

com a chave privada d = 2 e a ordem n = 79 novamente.

Primeiramente, encontraremos o par (7, s) que assina a mensagem.

1. Escolheremos o numero aleatério k£ = 3

2. Calcularemos o ponto (z,y) = k* G, ou seja, (x,y) = 3 % (2,22).
Mas (z,y) = 3G = 2G+G e ja calculamos 2G = (52, 7), logo (z,y) = (52,7)+(2, 22).

E, com a féormula anterior, encontraremos

(x,y) = (62,63)

3. Calcularemos r = x mod n, ou seja, r = 62 mod 79.

Assim, encontramos r = 62. Como r # 0, continuaremos.
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4. Calcularemos s = L,:*d mod n.

Teremos que s = “5222 mod 79

1 124
s = L mod 79
141
s = — mod 79
3
s =47 mod 79
s =47

5. Assim, a assinatura serd o par (62,47).

Encontrado o par (r, s), verificaremos a sua veracidade.

1. Tanto r = 62 quanto s = 47 sao menores do que 78, entao esta verificado.

2. Calcularemos w = s~ mod n

w = 47" mod 79 = 37

3. Calcularemos u = z * w mod n

u=17% 37 mod 79 = 629 mod 79 = 76

4. Calcularemos v = r * w mod n

v =62 * 37 mod 79 = 2294 mod 79 = 3

5. Calcularemos o ponto (z,y) = uG + vQ

uG = T6G = (62,4)
vQ =30Q = Q +2Q = (11,20)
Entao, (z,y) = (62,63)

6. Por fim, verificamos que r = x mod n.
Isto é confirmado, pois, 62 = 62 mod 79.

Logo, a assinatura ¢é verificada.
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5.2 Fundamentacdo para seu funcionamento

5.2.1 O uso de um ponto secreto S

Primeiro, explicaremos brevemente como ocorre o funcionamento do algoritmo da

ECC em si. Para isso, utilizaremos a comutatividade da multiplicagao escalar.

Supomos que Alice possua uma chave privada a e uma chave publica Py =a X G
(sendo G o ponto gerador piiblico) e Bob possua, da mesma forma, as chaves b e Pg. Caso
Bob queira enviar uma mensagem para Alice, ele devera utilizar sua chave privada b e a

chave publica de Alice P4, computando um ponto secreto S, desta forma:

S=bx PA
Repare que, o que Bob estd fazendo, consiste, no fundo, em realizar as seguintes
operacoes:
S=bx(axQq)

Alice, por sua vez, computara um ponto secreto S’, que serd obtido pela multipli-

cacao da sua chave privada com a chave ptublica de Bob.

S/:CLXPB

Perceba, também, que esta operacao pode ser escrita da seguinte forma:

S'=ax(bxQG)

E possivel notar, portanto, que pela associatividade e comutatividade das opera-

¢oes, teremos que S = 5’.

S=bx(axG)=((bxa)xG=(axb)xG=5

Deste modo, tanto Alice como Bob possuem a mesma chave secreta S, que nao é

possivel um usuario do meio inseguro conseguir interceptar.

Este problema pode, ainda, ser pensado da seguinte maneira: dados G,aG e bG,

pela complexidade dos objetos, torna-se de grande dificuldade descobrir abG.

Perceba que, com isto, provamos que Alice e Bob possuem acesso & mesma chave
secreta, mas nada dissemos sobre encriptacao e decriptagao de mensagens enviadas por

eles. Isso se deve pelo fato de que a ECC sozinha nao prové um método de encriptacao,
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necessitando de algum tipo de esquema hibrido, em que, no final, a criptografia é realizada
de modo simétrico. Isso é possivel utilizando alguma informacao obtida de S, como, por

exemplo, utilizar sua coordenada x como chave. Um exemplo amplamente utilizado é a
ECDH (Elliptic Curve Diffie-Hellman).

5.2.2 Assinatura e Verificacao

Por sua vez, para a explicacao da assinatura e sua verificacao, estaremos supondo

que Alice esteja assinando.

Lembramos inicialmente que, ao final da verificacao, constatamos que
P =uG 4+ vPy,

onde P, é a chave publica de Alice.

No entanto, como P4 = d,G, logo,

P = uG +vd4G.

Dessa forma, podemos isolar G, de modo que

P = (u+vdy)G.

Mas, como ©v = zw e v = rw, ignorando, por ora, as parcelas de mod n, temos que

P = (wz+ wrdy)G.

E, assim, isolamos w, para que tenhamos

P =w(z+rdy)G.

Mas, sabemos ainda que k = w(z+rd4) mod n. Dessa forma, retornamos ao valor
original de
P =kG.

Assim, confirmamos que a assinatura esta verificada.
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6 Implementacao

A implementacao da Criptografia de Curvas Elipticas foi feita utilizando a lingua-
gem de programagao Python (Python Software Foundation, 2025). Para uma utilizagao
mais simples, o codigo foi gerado no software online Google Colab (Google Research,

2017).

A biblioteca Python utilizada foi a biblioteca ecies. A sigla ECIES refere-se ao
Elliptic Curve Integrated Encryption Scheme (ou seja, Esquema de Criptografia Integrada
de Curva Eliptica), que corresponde a um dos sistemas hibridos de criptografia menciona-
dos anteriormente. Esta biblioteca ajuda a gerar, com grande facilidade, chaves ptublicas

e privadas baseadas em uma curva eliptica especifica.

A curva padrao do ECIES é a mesma curva padrao para o Bitcoin que ja mencio-

namos anteriormente (y* = 2° + 7), chamada de "secp256k1".

As fungoes da biblioteca ecies utilizadas para o funcionamento do cédigo sao as

seguintes:

o PrivateKey: Gera uma chave privada, ou seja, um ponto da curva eliptica selecio-

nada.

o public_key: Com base na chave privada previamente escolhida, gera uma chave

publica.

o encrypt: Funcao que recebe a chave publica e os dados a serem criptografados e

devolve, em bytes, os dados encriptados.

o decrypt: Funcao que recebe a chave privada e os dados a serem decriptografados e

devolve, em bytes, os dados decriptados.

Abaixo, é demonstrado um exemplo de chave privada e chave publica (ambas com

valores hexadecimais) gerados pela curva secp256k1.

Chave privada: 1af3d2ee465c84a980fa3a31b0cec23c184c89409ee85
a9e58d51607afe9f622

Chave publica: 04bd2dc0415704d054cba9e03da05£0327325a2cc3b
006715c4176£6648f4cee9b880fabe96e56£948fedec3f77eb9d268bel
b79572e345d56c3c557c52dda48ce

Além disso, foram utilizadas algumas funcoes da biblioteca base64:
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o bb64encode: Codifica os dados para base64, retornando em bytes os dados codificados
em formato ASCII.

e bb64decode: Decodifica os dados que estao em base64, retornando os bytes originais.

O cbédigo completo pode ser visualizado no anexo A.

6.1 Base 64

A codificacao em base 64 é projetada para representar sequéncias arbitrarias de
grupos de oito caractéres, de modo que nao necessariamente seja legivel para outros

Uusuarios.

Sao utilizados um subconjunto de 65 caractéres do ASCII, o que permite que
cada caractér possua seis bits. O 65° caractér é o "=", conhecido como padding. Ele
representa uma funcgao especial que ajuda o processo de codificacdo e decodificacao da
base64 (JOSEFSSON, 2006).

O processo de codificagdo funciona ao representar grupos de 24 bits de entrada
como cadeias de 4 caracteres codificados. Avancando da esquerda para a direita, um
grupo de entrada de 24 bits é formado pela concatenacao de trés grupos de entrada de 8
bits. Esses 24 bits, entao, sao entao tratados como 4 grupos concatenados de 6 bits, cada

um dos quais é traduzido em um tnico caractere no alfabeto Base 64.

Valor Cod. Valor Cod. Valor Cod. Valor Cod.

0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 1 54 2
4 E 21 \Y 38 m 5] 3
5 F 22 W 39 n o6 4
6 G 23 X 40 0 57 D
7 H 24 % 41 D 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 S 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v (pad) =
14 @) 31 f 48 w

15 P 32 g 49 X

16 Q 33 h 50 y

Tabela 8 — Alfabeto Base 64 conforme RFC 4648 (JOSEFSSON, 2006)
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Se menos de 24 bits estiverem disponiveis ao final dos dados, bits com valor zero
serao adicionados a direita para formar um nimero inteiro com 6 bits. Este preenchimento

¢é feito usando o caractér "=".

Como toda entrada em base 64 ¢ um numero inteiro multiplo de oito, apenas os

seguintes casos podem ocorrer:

o A dltima parcela de entrada possui exatamente 24 bits; neste caso, a ultima unidade

de saida serd um multiplo de 4 caracteres, sem necessidade de padding.

o A ultima parcela possui exatamente 16 bits; nesse caso, a saida final possui 3 carac-

teres seguidos de um padding.

o A tultima parcela possui exatamente 8 bits; nesse caso, a saida possui dois caracteres

seguidos de dois paddings.

Dados Base64

M TQ==

MA TUE=

MAT TUFU

MATE TUFURQ==

MATEM TUFURUO=

MATEMA TUFURU3DgQ==
MATEMAT TUFURU3DgVQ=
MATEMATI TUFURU3DgVRJ
MATEMATIC | TUFURU3DgVRJQw==
MATEMATICA | TUFURU3DgVRJQOE=

Tabela 9 — Exemplo de letras codificadas em base64

Fonte: Elaborado pela autora.

A utilizagdo da base64 dentro do algoritmo garante que o destinatario da men-
sagem consiga decripta-la da maneira correta e com seguranca, de modo que nao serao

corrompidos durante o processo.

6.2 Alguns resultados

A implementacao pratica do algoritmo baseado em Criptografia de Curvas Elipti-

cas permitiu analisar de forma comparativa seu desempenho em relagdo ao RSA.

Os testes foram feitos utilizando diferentes tipos de arquivos, como arquivo de
texto, imagem em jpeg, arquivo em pdf e outros. O primeiro teste foi feito utilizando o
poema "Cancao do Exilio", de Gongalves Dias. O tamanho do poema é de 695 bytes, e ele
demorou 0.0036s para ser encriptado e decriptado pela ECC, enquanto o mesmo processo

demorou 0.0719s na RSA, ou seja, cerca de 20 vezes a mais.
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Listing 6.1 — Poema Cancao do Exilio (DIAS, 1957)

Minha terra tem palmeiras,
Onde canta o Sabia;
As aves, que aqui gorjeiam,

Ndo gorjeiam como 1l4.

Nosso céu tem mais estrelas,
Nossas varzeas tém mais flores,
Nossos bosques tém mais vida,

Nossa vida mais amores.

Em cismar, sozinho, a noite,
Mais prazer eu encontro 1l&;
Minha terra tem palmeiras,

Onde canta o Sabia.

Minha terra tem primores,

Que tais ndo encontro eu ca;

Em cismar sozinho , 4 noite
Mais prazer eu encontro 1l&;
Minha terra tem palmeiras,

Onde canta o Sabia.

N&do permita Deus que eu morra,
Sem que eu volte para 14§;

Sem que disfrute os primores
Que ndo encontro por ca;

Sem quinda aviste as palmeiras,

Onde canta o Sabia.

E claro que, apesar de a razao de um tempo pelo outro ter sido um nimero
substancialmente grande, ainda é possivel argumentar que, para usos diarios, a RSA nao
apresentaria diferencas tao significativas, pois encontram-se na casa dos centésimos de

segundo.

Por isso, foram realizados outros testes, utilizando arquivos com diversos tama-

nhos.

Na tabela 10, segue alguns outros dados que foram testados no cédigo, bem como

seus respectivos tamanhos e o tempo de demora em cada um dos algoritmos.

Os testes realizados demonstraram que a ECC apresentou um comportamento sig-

nificativamente mais eficiente, especialmente a medida que o volume de dados aumentava.
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Arquivo Tamanho ECC RSA

Cancao do Exilio (txt) 695 bytes  0.0036 s 0.0719 s
Cédigo em Python (py) 7.313 bytes  0.0058 s 0.1853 s
Planilha dos alunos da Matemaética Aplicada (csv) 112.879 bytes 0.0095s 0.5547 s
Monalisa (jpeg) 317.486 bytes 0.0113s 1.515s
Me at the zoo (mp4, 240p) 791.367 bytes 0.0200 s 3.6413 s

Tabela 10 — Comparacao de desempenho entre RSA e ECC para diferentes arquivos

Fonte: Elaborado pela autora.

Enquanto o RSA mostrou tempos de execugao progressivamente maiores conforme o ta-
manho das mensagens crescia, a ECC manteve um desempenho mais estavel e responsivo.
Essa diferenca tornou-se ainda mais evidente em cenarios envolvendo operagdes com mui-
tos bytes, nos quais o0 RSA se mostrou substancialmente mais lento. Estas razdes podem

ser observadas na tabela 11.

Algo que pode ser percebido também é que, para o arquivo de texto, sua versao
criptografada tornou-se um arquivo com apenas 9 linhas, formado, em sua maioria, por
simbolos que o computador nao consegue escrever. Enquanto isso, para os demais arqui-
vos, nao foi possivel observar a versao criptografada. Esses fatores, juntos, comprovam a

dificuldade de algum usuario aleatério interceptar mensagens.

Arquivo Razao entre RSA e ECC

txt 19.97
py 31.94
csv 58.39
jpeg 134.07
mp4 182.06

Tabela 11 — Razao entre os algoritmos testados para cada arquivo

Fonte: Elaborado pela autora.

Com os dados obtidos, verificou-se que este aumento segue um padrao que se
aproxima mais do potencial. Essa tendéncia pode ser observada pelo método de regressao
linear, cujo resultado pode ser visualizado na figura 9. A curva que apresentou maior
similaridade aos dados foi

y = 2.2237%312,

que obteve coeficiente de determinacao R? = 0.9077. O codigo utilizado para essa andlise

pode ser visto no anexo A.
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Figura 9 — Curva que aproximou-se melhor dos dados

Fonte: Elaborado pela autora.
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7 Conclusao

No presente trabalho, foi possivel compreender a grande importancia do desenvol-
vimento da criptografia, em especial, no mundo atual, em que grande parte das interacoes
e transacoes efetuadas sao realizadas por meios inseguros. A crescente digitalizacao da
sociedade tornou indispensavel o uso de ferramentas criptograficas capazes de garantir
privacidade, integridade e autenticidade das informacdes trocadas, o que evidencia a re-

levincia do tema estudado.

Estudamos o funcionamento destas criptografias, desde suas fundamentagoes ma-
tematicas, baseadas na Algebra e na Aritmética, até exemplos praticos e verificacoes de
seus processos. Esse percurso permitiu estabelecer uma visao clara tanto das propriedades

tedricas quanto da aplicabilidade real dos métodos.

Com base nisso, pode-se concluir que a Criptografia de Curvas Elipticas apresenta
vantagens significativas em relagdo a Criptografia RSA, amplamente utilizada até os dias
de hoje. Esta vantagem se deve a necessidade de um comprimento menor da chave de
criptografia para atingir niveis equivalentes de seguranca, além de um tempo computaci-
onal inferior na execucao de suas operacoes. Esses fatores tornam a ECC particularmente

adequada para dispositivos com recursos limitados.

Percebeu-se, ainda, que nao s6 a RSA atua de maneira mais lenta, como também
sofre um aumento proporcionalmente maior dessa lentidao a medida que o tamanho do
arquivo a ser criptografado cresce. Esse comportamento deixa evidente a diferenca de
eficiéncia entre os dois métodos, reforcando a superioridade da ECC em cenarios nos
quais o desempenho é fator crucial. Ainda foi verificado que o aumento segue um padrao

que se aproxima mais do potencial.

Os resultados obtidos reforcam a relevancia e o potencial da Criptografia de Curvas
Elipticas no cenario atual, especialmente diante da crescente demanda por seguranca
e eficiéncia nos sistemas digitais. Ainda que a RSA continue amplamente utilizada, a
tendéncia observada indica um movimento gradual em dire¢do a adogao de métodos como

a ECC, que atendem melhor as necessidades tecnologicas atuais.

No entanto, para o futuro da criptografia mundial, é importante mencionar que
os estudos a respeito da computacao quantica trazem grande fragilidade em relacao aos
métodos de criptografia conhecidos. O algoritmo de Shor (SHOR, 1994) é conhecido por
conseguir vencer a dificuldade de encontrar fatores primos de nimeros grandes, o que

comprometeria a seguranca de sistemas criptograficos.

Isso acontece pois, na computacao quantica, nao temos mais bits, representados
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pelos valores de 0 e 1, mas sim qubits, que encontram-se em uma combinacao linear entre
os estados 0 e 1, com coeficientes complexos (FREITAS, 2010). Em um computador

quantico, para fatorar um nimero n, o tempo necessério seria de apenas logn.
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ANEXO A - Coddigos

Listing A.1 — C6digo Python da Implementagao da ECC (e RSA)

#Dando upload no arquivo e salvando ele em uma variavel

from google.colab import files
uploaded = files.upload()
arquivoCaminho = list(uploaded.keys())[-1]

HH##H##H#E ECC

#Importar bibliotecas

from ecies import encrypt, decrypt
import base64, os

from ecies.keys import PrivateKey

import time
tempoInicial = time.perf_counter ()
#Chaves privada e piblica

secp_k = PrivateKey("secp256kl")
#secp256kl

curva utilizada para o bitcoin (y~2 = x73 + 7)

privadaHex = secp_k.to_hex()

publicaHex = secp_k.public_key.to_hex()

#chaves publica e privadas convertidas para hexadecimal

#Dividir o caminho entre diretdério e nome do arquivo

diretorio, nomeArquivo = os.path.split(arquivoCaminho)

arquivoEnc = os.path. join(diretorio, f’encriptado_{nomeArquivo}’)
#cria arquivo para encriptacgéo

arquivoDec = os.path.join(diretorio, f’decriptado_{nomeArquivol}’)

#cria arquivo para decriptacgédo

#Converter em base64

dados = 0
with open(arquivoCaminho, "rb") as f:
#rb = read binary (leitura em binario)

dados = base64.b64dencode(f.read())

#codifica esses bytes em base64
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secpEncriptado = encrypt(publicaHex, dados)

#encripta os dados com a chave piublica

#Abre o arquivo encriptado e escreve nele
with open(arquivoEnc,"wb") as ef:
#wb = write binary (escrever em binario)

ef .write(secpEncriptado)

#Decriptacéo
secpDecriptado = decrypt(privadaHex, secpEncriptado)

#decriptar o arquivo encriptado, utilizando a chave privada

#Abre o arquivo decriptado e escreve nele
with open(arquivoDec,"wb") as df:
df .write (base64.b64decode (secpDecriptado))

#decodifica uma string em base64, voltando ao original

tempoFinal = time.perf_counter ()

print ("\nTempo necessario:",tempoFinal - tempolInicial,"segundos.")

H###H##H#E RSA

#Importando bibliotecas
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.backends import default_backend

tempoInicial = time.perf_counter ()

#Lendo o arquivo
with open(arquivoCaminho, "rb") as f:

dados_rsa = f.read()

#Gerando par de chaves RSA
private_key = rsa.generate_private_key(
public_exponent=65537,
#expoente publico, padrdo mundial (primo e com formato bindrio simples
key_size=2048, #padrdo moderno
backend=default_backend ()
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)
public_key = private_key.public_key ()

# Definindo tamanho m&ximo de cada partigdo da mensagem
hashSize = 32 # SHA-256 -> 32 bytes

tamanhoParticao = 2048 // 8 - 2 * hashSize - 2 # ~190 bytes
#2048 bits/8 = 256 bytes, o resto & requisito do algoritmo

# Dividindo a mensagem em partigdes
particoes = [dados_rsal[i:i+tamanhoParticao] for i in range (0,

len(dados_rsa), tamanhoParticao)]

# Criptografando cada particgéo
particoesEncriptadas = []
for particao in particoes:
particaoEncriptada = public_key.encrypt(
particao,
padding.0AEP( #0Optimal Asymmetric Encryption Padding
mgf=padding.MGF1 (algorithm=hashes.SHA256 ()),
algorithm=hashes.SHA256 (),
label=None

)

particoesEncriptadas.append(particaoEncriptada)

# Junta todas as partigdes criptografados

mensagemEnc = b"".join(particoesEncriptadas)

# Salva a mensagem criptografada
arquivoEnc = os.path. join(diretorio, f"rsa_encriptado_{nomeArquivol}")
with open(arquivoEnc, "wb") as f:

f.write(mensagemEnc)

# Descriptografa cada partigédo

# 0 tamanho de cada partigdo criptografada = tamanho da chave
#em bytes

tamanhoPartEnc = 2048 // 8 # 256 bytes

particoesDec = [
private_key.decrypt (
mensagemEnc [i:i+tamanhoPartEnc],
padding . 0AEP (
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mgf=padding.MGF1 (algorithm=hashes.SHA256()),
algorithm=hashes.SHA256 (),
label=None

)

for i in range(0, len(mensagemEnc), tamanhoPartEnc)

# Junta partigdes descriptografadas

mensagemDec = b"".join(particoesDec)

# Salva mensagem descriptografada
arquivoDec = os.path.join(diretorio, f"rsa_decriptado_{nomeArquivol}")
with open(arquivoDec, "wb") as f:

f.write(mensagemDec)

tempoFinal = time.perf_counter ()

print ("\nTempo necessédrio:", tempoFinal - tempoInicial, "segundos.")

Listing A.2 — Codigo Python da Regressao Nao-Linear

import numpy as np

import matplotlib.pyplot as plt

# Dados
numero_bytes = np.array([695, 7313, 112879, 317486, 791367], dtype=float)
razao_rsa_ecc = np.array([19.97, 31.94, 58.39, 134.07, 182.06], dtype=floa

# Transformagdo logaritmica para regresséo
log_bytes = np.log(numero_bytes)

log_razao = np.log(razao_rsa_ecc)

# Regress&do linear
expoente, 1ln_coeficiente = np.polyfit(log_bytes, log_razao, 1)

coeficiente = np.exp(ln_coeficiente)

print ("Modelo de poténcia: y = coeficiente * x“expoente")
print (f"Coeficiente = {coeficiente:.3f}")

print (f"Expoente = {expoente:.3f}")

# Valores ajustados

razao_ajustada = coeficiente * numero_bytesx**xexpoente
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# Calcular R quadrado

soma_residuos_quadrado = np.sum((razao_rsa_ecc - razao_ajustada)**2)
soma_total_quadrado = np.sum((razao_rsa_ecc - np.mean(razao_rsa_ecc))*%*2)
r_quadrado = 1 - soma_residuos_quadrado / soma_total_quadrado

print ("R =", r_quadrado)

# Curva ajustada para plotagem

bytes_fit = np.linspace(min(numero_bytes), max(numero_bytes), 500)

razao_fit coeficiente * bytes_fit**xexpoente

# Plot

plt.scatter (numero_bytes, razao_rsa_ecc, label="Dados", color=’blue’)
plt.plot(bytes_fit, razao_fit, color=’green’, label=f"y = {coeficiente:.3f
plt.xlabel ("Nimero de bytes")

plt.ylabel ("Raz&o entre RSA e ECC")

plt.legend ()

plt.grid (True)

plt.title("Ajuste de Poténcia")

plt.show ()
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