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Resumo
Em um mundo onde milhares de transações de dados ocorrem via meios inseguros (como
a internet) a todo instante, o uso da criptografia torna-se essencial para a segurança e
privacidade dos usuários, bem como o estudo de diferentes métodos que proporcionem
sua melhor eficiência.

A Criptografia de Curvas Elípticas, proposta independentemente por Miller e Koblitz em
meados de 1986, propõe a utilização de curvas elípticas para esta finalidade, utilizando-se
do fato de que essas curvas, quando aplicadas em corpos finitos, geram grupos abelianos
com estruturas que tornam sua decriptação mais lenta do que a de outras criptografias
geralmente utilizadas, como a RSA e a de Diffie-Hellman.

Neste trabalho, é proposto o estudo da Criptografia de Curvas Elípticas e suas aplicações,
adentrando conceitos da Álgebra e da Geometria Algébrica.

Palavras-chaves: Criptografia, Curvas Elípticas, Problema do Logaritmo Discreto.



Abstract
In a world where thousands of data transactions occur via unsafe means (for instance,
the internet) all the time, the use of cryptography becomes essential to the security and
privacy of users, as well as the study of different methods that provide its efficiency.

Elliptic Curve Cryptography, proposed independently by Miller and Koblitz around 1986,
offers the use of elliptic curves with this goal. It uses the fact that these curves, when
applied in finite fields, generate abelian groups with structures that make the decryption
slower than that of its counterparts that are generally used, for instance, RSA and Diffie-
Hellman.

In this work, it’s proposed the study of Eliptic Curve Cryptography and its applications,
entering concepts of algebra and algebraic geometry.

Key-words: Cryptography, Elliptic Curves, Discrete Logarithm Problem.



Lista de ilustrações

Figura 1 – Exemplo de curva elíptica utilizada para o Bitcoin (𝑦2 = 𝑥3 + 7) . . . . 15
Figura 2 – Exemplo de encriptação de mensagem com a criptografia de chave pública 28
Figura 3 – 𝑃 + 𝑄 = −𝑅 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figura 4 – Soma para o caso em que a reta é tangente a 𝑄 . . . . . . . . . . . . . 39
Figura 5 – Soma para o caso 𝑃 + 𝑄 = 𝑃 − 𝑃 = 𝑂 . . . . . . . . . . . . . . . . . . 39
Figura 6 – Caso em que 𝑃 é ponto de inflexão . . . . . . . . . . . . . . . . . . . . 40
Figura 7 – Soma para o caso 𝑃 + 𝑄 = 2𝑃 = −𝑅 . . . . . . . . . . . . . . . . . . . 40
Figura 8 – Curva utilizada para a execução do Bitcoin . . . . . . . . . . . . . . . . 44
Figura 9 – Curva que aproximou-se melhor dos dados . . . . . . . . . . . . . . . . 55



Lista de tabelas

Tabela 1 – Exemplo de permutação para a Cifra de César . . . . . . . . . . . . . . 11
Tabela 2 – Frequência média das letras na língua portuguesa (BRAGA, 2003) . . 12
Tabela 3 – Exemplo de cifra homofônica . . . . . . . . . . . . . . . . . . . . . . . 12
Tabela 4 – Comparação do comprimento da chave de criptografia (em bits) . . . . 15
Tabela 5 – Crivo de Eratóstenes para 𝑛 = 120 . . . . . . . . . . . . . . . . . . . . 23
Tabela 6 – Tabela de Conversão . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Tabela 7 – Pontos em 𝐸(F5) (MEIRELES, 2020) . . . . . . . . . . . . . . . . . . . 41
Tabela 8 – Alfabeto Base 64 conforme RFC 4648 (JOSEFSSON, 2006) . . . . . . 51
Tabela 9 – Exemplo de letras codificadas em base64 . . . . . . . . . . . . . . . . . 52
Tabela 10 – Comparação de desempenho entre RSA e ECC para diferentes arquivos 54
Tabela 11 – Razão entre os algoritmos testados para cada arquivo . . . . . . . . . . 54



Sumário

Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 OBJETIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Objetivos gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Objetivos específicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 TEORIA DOS NÚMEROS E ARITMÉTICA . . . . . . . . . . . . . 18
2.1 Teoria dos Números . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.1 Divisilibidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Primalidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Aritmética Modular . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Função 𝜑(𝑚) de Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 CRITOGRAFIA RSA . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Método de funcionamento da RSA . . . . . . . . . . . . . . . . . . . 29
3.2 Fundamentação para seu funcionamento . . . . . . . . . . . . . . . . 32

4 ÁLGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Álgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 Grupos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Anéis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Corpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Geometria Algébrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Curvas Elípticas sobre os Números Reais . . . . . . . . . . . . . . . . . . . 37
4.2.2 Curvas Elípticas sobre Corpos Finitos . . . . . . . . . . . . . . . . . . . . 39

5 CRIPTOGRAFIA DE CURVAS ELÍPTICAS . . . . . . . . . . . . . . 42
5.1 Método de funcionamento da ECC . . . . . . . . . . . . . . . . . . . 42
5.1.1 Multiplicação de pontos . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Escolhendo os parâmetros . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.3 Assinatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Fundamentação para seu funcionamento . . . . . . . . . . . . . . . . 48
5.2.1 O uso de um ponto secreto 𝑆 . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Assinatura e Verificação . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 IMPLEMENTAÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Base 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



6.2 Alguns resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ANEXOS 60

ANEXO A – CÓDIGOS . . . . . . . . . . . . . . . . . . . . . . . . 61



11

Introdução

A criptografia (do grego, cryptos: secreto, oculto e -grafia: escrita) consiste na
prática de métodos para codificar uma mensagem de modo que apenas o destinatário real
consiga decifrá-la. Sua evolução está profundamente ligada à existência da criptoanálise,
que tem por objetivo a decriptação destes sistemas criptográficos por meio de análises
linguísticas, matemáticas, entre outras.

Sinais de métodos similares à criptografia como forma de comunicação podem ser
observados desde 2000 a.C., no Egito e na Mesopotâmia. (COSTA; FIGUEIREDO, 2006)
Nesta época, as mensagens eram apenas ocultadas, sem que seu conteúdo fosse modificado.
Isto era possível pela utilização de diferentes alfabetos, e sua segurança baseava-se somente
na esperança de que a mensagem não entrasse em contato com alguém que tivesse os
conhecimentos necessários para decifrá-la. Por conta de sua natureza, este método ainda
não pode ser descrito como criptografia, mas sim, como esteganografia.

O início da criptografia clássica é, usualmente, atribuído ao ditador romano Júlio
César (100 – 44 a.E.C.), que utilizava um código simples para comunicar-se em combate.
A Cifra de César consistia em substituir cada letra do alfabeto por 𝑛 posições à sua frente,
permutando-as. A chave de criptografia, neste caso, era conhecer o valor de 𝑛 para que
fosse possível, posteriormente, permutá-las 𝑛 posições para trás, retornando ao alfabeto
original. Como o alfabeto português possui 26 letras, é possível obter 25 chaves diferentes.

A criptoanálise, neste período, resumia-se a testar por "força bruta"todas as pos-
sibilidades de permutações, o que, para os dias atuais, pode parecer uma tarefa relativa-
mente simples. É preciso levar em conta, no entanto, que a grande maioria das populações
não sabia ler ou escrever. Na tabela 1, observa-se um exemplo de uma permutação para
a Cifra de César com 𝑛 = 3, em que partimos do alfabeto original da primeira linha e o
ciframos com base na segunda linha.

Tabela 1 – Exemplo de permutação para a Cifra de César

Alfabeto original ... V W X Y Z A B C D E ...
Alfabeto permutado ... Y Z A B C D E F G H ...

Fonte: Elaborado pela autora.

Durante a Idade Média, a utilização de mensagens secretas era atribuída à magia
negra ou à bruxaria, e, portanto, amplamente desconsiderada. Os poucos resquícios que
existem de criptografia desta época são, também, de cifragem monoalfabética, em que
cada letra do alfabeto corresponde a um único símbolo e vice-versa.
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Com a idade de ouro da civilização árabe, houve avanços na criptoanálise que
tornaram necessária a evolução da criptografia. No século VII, al-Khalil decifrou antigos
criptogramas bizantinos baseando-se na ideia de que o título provavelmente seria "Em
nome de Deus", método conhecido como "método da palavra provável".

Outro problema que as criptografias monoalfabéticas apresentam, de forma que
tornam-se facilmente decifráveis, mesmo não sendo o destinatário legítimo da mensagem,
é o fato de que a frequência média em que uma letra específica aparece em um texto de
uma determinada língua é mais ou menos constante. Assim, utilizando-se de uma análise
de frequência das mesmas, é possível decifrar a mensagem. (COUTINHO, 2016)

Tabela 2 – Frequência média das letras na língua portuguesa (BRAGA, 2003)

Letra % Letra % Letra % Letra %
A 14,64 G 1,30 N 5,05 T 4,34
B 1,04 H 1,28 O 10,73 U 4,64
C 3,88 I 6,18 P 2,52 V 1,70
D 4,10 J 0,40 Q 1,20 X 0,21
E 12,57 L 2,78 R 6,53 Z 0,47
F 1,02 M 4,75 S 7,81

Na língua portuguesa, por exemplo, a letra A corresponde à letra de maior frequên-
cia média (14,64%), seguida pela letra E (12,57%). Utilizando-se desta informação, é fácil
admitir que, quaisquer que sejam as letras que corresponderão às mesmas no novo có-
digo, serão as que aparecerão com maior frequência, e, assim, não se torna uma tarefa
complicada a de quebrar uma Cifra de César.

Apesar desses conhecimentos árabes, os europeus continuaram utilizando cripto-
grafias de fácil decifragem até a Idade Moderna, em que iniciou-se o processo de utilizar
cifras homofônicas, nas quais cada vogal poderia ser representada por múltiplos símbolos
distintos. Esse método também era utilizado em conjunto com a transposição de letras,
como na Cifra de César. Na tabela 3 observa-se um exemplo de uma cifra homofônica.

Tabela 3 – Exemplo de cifra homofônica

Alfabeto original A B C D E F G ...
Alfabeto cifrado ⋆ Z @ M S ! ∇ ...

X †
? 𝜇
Q

Fonte: Elaborado pela autora.
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Ao longo do tempo, algumas dessas cifras passaram a contar com mais de 500
símbolos diferentes, utilizando diversas representações para vogais, consoantes, dígrafos
e sílabas comuns da língua. Apesar do esforço, todas estas cifras eram, eventualmente,
quebradas por criptoanalistas da época ou acabavam caindo em desuso devido à alta
dificuldade para memorizar seus padrões.

Com o advento do telégrafo, em 1844, a encriptação de mensagens tornou-se um tó-
pico importante para o público geral. Isso ocorreu porque a mensagem precisa ser lida por
uma terceira pessoa: o operador do telégrafo. Essas necessidades apenas intensificaram-se
com a invenção do rádio.

Durante a Primeira Guerra Mundial, foi utilizada principalmente a cifra ADFGVX
(POULTER; KULP, 2017), que utilizava uma combinação de técnicas de transposição e
substituição. Essas mensagens cifradas eram comunicadas via rádio, o que as tornava
sujeitas a interceptações a todo momento. A decriptação dessas mensagens foi essencial
para a resolução de muitas batalhas, uma vez que, sabendo onde o inimigo pretendia
atacar, eliminava-se o fator surpresa.

No entanto, a história mais marcante envolvendo criptografia do século XX ocorre
durante a Segunda Guerra Mundial, com a máquina de cifragens alemã conhecida como
Enigma (SMART, 2016). A máquina, que lembrava uma máquina de escrever, utilizava
uma chave que dependia da configuração de montagem, isto é, a ordem e posição dos
misturadores, conexão dos cabos emparelhando pares de letras no painel frontal e a posição
do refletor. Por questões de segurança, ainda, a chave era trocada após cada mensagem.

Com os avanços da tecnologia, a criptografia tornou-se um elemento essencial
para a sociedade. Não mais utilizada apenas em estratégias de guerras, a criptografia está
atualmente presente desde mensagens enviadas pela internet, como também em transações
financeiras e compras on-line. Isso significa que, diferente dos tempos de Júlio César, em
que a chave de codificação poderia ser combinada previamente em um ambiente seguro,
as criptografias modernas precisam compartilhar essa chave em um ambiente inseguro,
que pode estar sujeito a ataques externos.

Uma das grandes limitações da criptografia, até então, era a crença de que só
seria possível utilizar métodos de chave simétricas, ou seja, situações em que a chave para
encriptar e decriptar a mensagem fosse a mesma.

Para que a segurança dessas informações fosse alcançada de maneira eficiente,
surgiu a necessidade do que é chamado de "criptografia de chave pública"ou criptografia
assimétrica, um modelo de encriptação que consiste na utilização de uma chave pública,
conhecida por todos os usuários do meio, e uma chave privada, que possui tempo com-
putacional inviável para ser descoberta. Um criptossistema de chave pública deve conter
um esquema público de encriptação E e um esquema privado de decodificação D, tal que,
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para uma mensagem M,
𝐷(𝐸(𝑀)) = 𝑀 = 𝐸(𝐷(𝑀))

Em seu artigo "New Directions in Cryptography"(DIFFIE; HELLMAN, 1976),
Whitfield Diffie e Martin Hellman apontam, como solução desse problema, uma combina-
ção de função exponencial com aritmética modular, que pôde ser denominada como uma
função de mão única. Sua utilização teve início na criptografia RSA, criada por Rivest,
Shamir e Adleman (1978), três pesquisadores do Massachusetts Institute of Technology.

Na cifra RSA, para que Alice e Bob enviem mensagens sem que Eva consiga
interceptá-las, de alguma forma, são realizadas as seguintes operações:

1. Alice procura pela chave pública de Bob, que está disponível para todos os usuários
do meio.

2. Ela encontra o número 𝑛, o qual utilizará para cifrar sua mensagem e enviá-la para
Bob.

3. A mensagem criptografada chega até Bob, que utiliza sua chave secreta para decifrá-
la e ler a mensagem.

Eva, como usuária do meio, conhece a chave 𝑛, mas será incapaz de decifrar a
mensagem por não ter conhecimento da chave secreta, pois as operações utilizadas para
a codificação da mensagem são feitas de maneira que seja computacionalmente inviável
encontrar um dos valores a partir do outro.

A teoria que fundamenta a RSA, a qual entraremos em mais detalhes futuramente,
utiliza a multiplicação de dois números primos 𝑝 e 𝑞 grandes o suficiente que gerem 𝑛, e
suas operações serão feitas com os números primos em si, que, mesmo com 𝑛 conhecido,
serão desconhecidos. A teoria estabelece que, se um número 𝑛 tem mais do que 10160

dígitos e é obtido como produto de dois números primos, cada qual com mais de 1070

dígitos, então o tempo computacional para encontrar estes fatores é maior do que a idade
do universo.

Outro modelo de criptografia assimétrica promissor é a Criptografia de Curvas
Elípticas (ou ECC), independentemente proposta por (MILLER, 1986) e (KOBLITZ,
1987). Esta cifragem utiliza da estrutura de grupos abelianos que podem ser gerados
a partir das curvas elípticas. Enquanto a segurança do modelo RSA é baseada no pro-
blema da fatoração de inteiros suficientemente grandes, a segurança da ECC baseia-se no
problema do logaritmo discreto.

A escolha, em certos casos, da utilização da ECC, deve-se ao fato de que o problema
da fatoração de inteiros pode ser resolvido por um algoritmo de tempo subexponencial,
enquanto que o problema do logaritmo discreto demora tempo exponencial completo. Isso
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Figura 1 – Exemplo de curva elíptica utilizada para o Bitcoin (𝑦2 = 𝑥3 + 7)
Fonte: Elaborado pela autora.

implicará que, para atingir o mesmo nível de segurança em ambos os métodos, a ECC
exigirá parâmetros menores.

Devido ao fato de que os sistemas computacionais estão se tornando cada vez
menores e mais restritos, mas, ao mesmo tempo, possuem uma necessidade maior de
segurança, a ECC surge como uma alternativa viável em certas ocasiões. Na tabela 4,
comparamos o comprimento da chave de criptografia necessária, em bits, para obter a
mesma quantidade de bits de segurança.

Um valor 𝑛 de bits de segurança, neste caso, significa que seriam necessárias 2𝑛

operações para quebrar os códigos. Percebe-se que a ECC apresenta maior eficiência,
visto que, para obter uma chave com 256 bits de segurança, precisa de aproximadamente
metade do tamanho de uma chave RSA capaz de fornecer apenas 80 bits de segurança.

Tabela 4 – Comparação do comprimento da chave de criptografia (em bits)

(BARKER, 2020)

Bits de segurança RSA ECC
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

A ECC utiliza, para sua formulação, as curvas elípticas. Essas curvas são descritas
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pela equação
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,

onde ainda são excluídas as situações em que 4𝑎3+27𝑏2 = 0, a fim de evitar singularidades.
A vantagem na utilização dessas curvas deve-se ao fato de que as curvas elípticas são
capazes de formar grupos abelianos.

Essas curvas são aplicadas sobre campos finitos F𝑝, isto é, o conjunto de inteiros
módulo 𝑝, onde 𝑝 é um número primo. Dessa forma, as vantagens em sua utilização são
evidenciadas pelas estruturas algébricas que as compõem.

Por fim, a segurança do modelo será baseada no problema do logaritmo discreto.
Este problema pode ser explicado como: conhecidos os pontos 𝑃 e 𝑄, encontrar 𝑘 tal
que 𝑄 = 𝑘𝑃 , o que pode ser traduzido sobre os campos finitos F𝑝 para, conhecidos 𝑎 e 𝑏,
desejamos encontrar 𝑘 tal que 𝑏 = 𝑎𝑘 𝑚𝑜𝑑 𝑝. Desde que se evite curvas supersingulares
e também curvas cuja ordem não tenha nenhum fator primo grande, não é conhecido
nenhum algoritmo sub-exponencial que possa quebrar o sistema.
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1 Objetivos

1.1 Objetivos gerais
O presente trabalho tem como objetivo principal estudar a Criptografia de Curvas

Elípticas (ECC), bem como analisar suas vantagens e desvantagens em relação a outras
técnicas criptográficas amplamente utilizadas, como a Criptografia RSA. Esse objetivo
foi alcançado por meio do estudo de temas como Aritmética e Geometria Algébrica, que
fundamentam a formulação matemática desses modelos.

1.2 Objetivos específicos
Buscou-se compreender algoritmos baseados na ECC, como o Diffie–Hellman de

Curvas Elípticas (ECDH) e o Algoritmo de Assinatura Digital de Curvas Elípticas (ECDSA).
Esses algoritmos utilizam a ECC em formato híbrido, incorporando a ela um componente
de chave simétrica.

Para a conclusão do trabalho, estabeleceu-se ainda o objetivo de elaborar um
código em Python exemplificando o uso tanto da Criptografia de Curvas Elípticas quanto
da Criptografia RSA para criptografar e decriptar mensagens, de modo a possibilitar a
comparação do tempo computacional entre ambas.

O trabalho está disposto da seguinte forma: o capítulo 2 apresenta conceitos de
Teoria dos Números e Aritmética que serão necessários para o capítulo 3, que introduz a
Criptografia RSA. Em seguida, o mesmo ocorre nos capítulos 4 e 5, no qual o primeiro
introduz a Álgebra necessária para a compreensão do segundo, que trata-se da Criptografia
de Curvas Elípticas. O capítulo 6 apresenta a implementação do que foi estudado em
Python e o capítulo 7 conclui o trabalho.
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2 Teoria dos Números e Aritmética

A Aritmética é conhecida como a parte elementar da Teoria dos Números, e teve
como marco inicial a obra Os Elementos, de Euclides, aproximadamente 300 anos a.E.C..
No entanto, ela apenas se tornaria um dos pilares na matemática com os estudos de Pierre
de Fermat (1601-1665) e Leonhard Euler (1707-1783).

Estas áreas são identificadas pelo estudo das propriedades e relações que os núme-
ros possuem entre si, e terão extrema importância para o estudo da Criptografia RSA, já
que a mesma necessita da aritmética modular para criptografar suas chaves.

2.1 Teoria dos Números

2.1.1 Divisilibidade

Definição 2.1.1. Dados 𝑎, 𝑏 ∈ Z. Dizemos que 𝑎 divide 𝑏 quando existir algum inteiro
𝑐 ∈ Z tal que

𝑏 = 𝑎 * 𝑐

Neste caso, diremos também que 𝑎 é um divisor ou um fator de 𝑏, ou ainda, que 𝑏

é divisível por 𝑎 e 𝑐 é o quociente.

A notação para indicar que 𝑎 divide 𝑏 é 𝑎|𝑏, enquanto que, para 𝑎 não divide 𝑏,
a notação será 𝑎 ̸ | 𝑏. A negação dessa sentença indica que não existe nenhum número
inteiro 𝑐 tal que 𝑏 = 𝑐 * 𝑎.

Exemplo 2.1.1. 2|6, 3|6, 5 ̸ | 6.

Teorema 2.1.1. Se 𝑎, 𝑏, 𝑐 ∈ N, com 𝑎 ̸= 0 são tais que 𝑎|𝑏 e 𝑎|𝑐. Dados 𝑥, 𝑦 ∈ N,
𝑎|(𝑥𝑏 + 𝑦𝑐), e, se 𝑥𝑏 ≥ 𝑦𝑐, então 𝑎|(𝑥𝑏 − 𝑦𝑐).

A demonstração pode ser encontrada em (HEFEZ, 2006).

Teorema 2.1.2 (Divisão Euclidiana). Sejam 𝑎 e 𝑏 dois números naturais com 0 < 𝑎 < 𝑏.
Existem dois únicos números naturais 𝑟 e 𝑞 tais que:

𝑏 = 𝑎 * 𝑞 + 𝑟, 𝑟 < 𝑎
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A demonstração pode ser encontrada em (HEFEZ, 2006).

Exemplo 2.1.2. Vamos encontrar o quociente e o resto da divisão de 22 por 6.

Considere as diferenças sucessivas:

22 − 6 = 16, 22 − 2 * 6 = 10, 22 − 3 * 6 = 4 < 6

Portanto, 𝑞 = 3 e 𝑟 = 4.

Definição 2.1.2. Sejam 𝑎, 𝑏 ∈ Z, não simultaneamente nulos, o máximo divisor comum
entre os números inteiros 𝑎 e 𝑏 é o maior inteiro positivo 𝑑 que satisfaz as seguintes
condições:

• (i) 𝑑 é um divisor comum de 𝑎 e 𝑏;

• (ii) Se 𝑑′ é um divisor comum de 𝑎 e 𝑏, então 𝑑′|𝑑.

Definição 2.1.3. Sejam 𝑎, 𝑏 ∈ N*. Definimos o conjunto

𝐽(𝑎, 𝑏) = {𝑥 ∈ N*; ∃𝑢, 𝑣 ∈ N, 𝑥 = 𝑢𝑎 − 𝑣𝑏}

Teorema 2.1.3. Sejam 𝑎, 𝑏 ∈ N* e seja 𝑑 = 𝑚𝑖𝑛 𝐽(𝑎, 𝑏). Temos que 𝑑 é o 𝑚𝑑𝑐 de 𝑎 e 𝑏.

Demonstração. Suponhamos que 𝑐 divide 𝑎 e 𝑏. Logo, 𝑐 divide todos os números
da forma 𝑢𝑎 − 𝑣𝑏, portanto, divide todos os elementos de 𝐽(𝑎, 𝑏), logo, 𝑐|𝑑.

Mostraremos que 𝑑 divide todos os elementos de 𝐽(𝑎, 𝑏). Seja 𝑥 ∈ 𝐽(𝑎, 𝑏) e,
supomos por absurdo, que 𝑑 ̸ | 𝑥. Assim, pela Divisão Euclidiana, 𝑥 = 𝑑𝑞 + 𝑟, com
0 < 𝑟 < 𝑑.

Como 𝑥 = 𝑢𝑎 − 𝑣𝑏 e 𝑑 = 𝑚𝑏 − 𝑛𝑎, para alguns 𝑢, 𝑣, 𝑚, 𝑛 ∈ N, segue-se que
𝑟 = (𝑢+ 𝑞𝑛)𝑎− (𝑣 + 𝑞𝑚)𝑏 ∈ 𝐽(𝑎, 𝑏). Mas isso é um absurdo, pois 𝑑 = 𝑚𝑖𝑛 𝐽(𝑎, 𝑏) e 𝑟 < 𝑑.
Em particular, 𝑑|𝑎 e 𝑑|𝑏.

□

Proposição 2.1.1. Dois números naturais 𝑎 e 𝑏 são primos entre si se, e somente se,
existem números naturais 𝑚 e 𝑛 tais que 𝑛𝑎 − 𝑚𝑏 = 1.
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Demonstração. Suponhamos 𝑎 e 𝑏 primos entre si. Logo, 𝑚𝑑𝑐(𝑎, 𝑏) = 1. Como já
visto, temos que existem 𝑛 e 𝑚 tais que 𝑛𝑎 − 𝑚𝑏 = 𝑚𝑑𝑐(𝑎, 𝑏) = 1, segue-se a primeira
parte da preposição.

Reciprocamente, suponhamos que existam números naturais 𝑛 e 𝑚 tais que 𝑛𝑎 −
𝑚𝑏 = 1. Se 𝑑 = 𝑚𝑑𝑐(𝑎, 𝑏), temos que 𝑑|(𝑛𝑎 − 𝑚𝑏), ou seja 𝑑|1, e, portanto, 𝑑 = 1.

□

Teorema 2.1.4. Sejam 𝑎, 𝑏, 𝑐 números naturais. Se 𝑎|𝑏 * 𝑐 e 𝑚𝑑𝑐(𝑎, 𝑏) = 1, então 𝑎|𝑐.

Demonstração. Se 𝑎|𝑏 * 𝑐, então existe 𝑒 ∈ N tal que 𝑏𝑐 = 𝑎𝑒. Se 𝑚𝑑𝑐(𝑎, 𝑏) = 1,
então, temos que existem 𝑚, 𝑛 ∈ N, tais que 𝑛𝑎 − 𝑚𝑏 = 1. Multiplicando por 𝑐, obtemos

𝑐 = 𝑛𝑎𝑐 − 𝑚𝑏𝑐

Mas 𝑏𝑐 = 𝑎𝑒, então 𝑐 = 𝑛𝑎𝑐 − 𝑚𝑎𝑒 = 𝑎(𝑛𝑐 − 𝑛𝑒). Portanto, 𝑎|𝑐.

□

2.1.2 Primalidade

Definição 2.1.4 (Número primo). Um número natural maior do que 1 e divisível apenas
por 1 e por ele mesmo é chamado de número primo.

Ocorre da definição acima que, dados 𝑝 e 𝑞 números primos e 𝑎 um número natural
qualquer, será verdade que:

1. Se 𝑝|𝑞, então 𝑝 = 𝑞.

2. Se 𝑝 ̸ | 𝑎, então 𝑚𝑑𝑐(𝑝, 𝑎) = 1.

A primeira afirmação surge do fato de que, como 𝑝|𝑞 e 𝑞 é primo, só será possível
𝑝 = 1 ou 𝑝 = 𝑞. Como 𝑝 é primo, tem-se que 𝑝 > 1, da onde sai que 𝑝 = 𝑞.

A segunda afirmação ocorre pois, se 𝑚𝑑𝑐(𝑝, 𝑎) = 𝑑, então 𝑑|𝑝 e 𝑑|𝑎. Então 𝑑 = 1
ou 𝑑 = 𝑝. Mas 𝑑 ̸= 𝑝, pois 𝑝 ̸ | 𝑎, do que se pode concluir que 𝑚𝑑𝑐(𝑝, 𝑎) = 1.

Proposição 2.1.2. Sejam 𝑎, 𝑏, 𝑝 ∈ N*, com 𝑝 primo. Se 𝑝|𝑎𝑏, então 𝑝|𝑎 ou 𝑝|𝑏.
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Demonstração. Basta provar que, se 𝑝|𝑎𝑏 e 𝑝 ̸ | 𝑎, então 𝑝|𝑏. Mas, se 𝑝 ̸ | 𝑎, então
𝑚𝑑𝑐(𝑝, 𝑎) = 1, e segue que 𝑝|𝑏.

□

Corolário 2.1.1. Se 𝑝, 𝑝1, ..., 𝑝𝑛 são números primos e, se 𝑝|𝑝1...𝑝𝑛, então 𝑝 = 𝑝𝑖 para
algum 𝑖 = 1, ..., 𝑛.

Demonstração. Usando a proposição anterior, utilizamos a indução sobre 𝑛 e o
fato de que, se 𝑝|𝑝𝑖, então 𝑝 = 𝑝𝑖.

□

Teorema 2.1.5 (Teorema Fundamental da Aritmética). (GAUSS, 1801) Todo número
natural maior do que 1 ou é primo ou se escreve, de modo único, como um produto de
números primos.

Demonstração. Se 𝑛 = 2, o resultado é automaticamente verificado.

Supomos, então, que este resultado é válido para todo número natural menor do
que 𝑛, e provaremos que vale para 𝑛: se o número 𝑛 é primo, nada temos a demonstrar.
Suponhamos, então, que 𝑛 seja composto.

Logo, existem números naturais 𝑛1 e 𝑛2 tais que 𝑛 = 𝑛1𝑛2, com 1 < 𝑛1 < 𝑛

e 1 < 𝑛2 < 𝑛. Pela hipótese, existem números primos 𝑝1, ..., 𝑝𝑟 e 𝑞1, ..., 𝑞𝑠 tais que
𝑛1 = 𝑝1...𝑝𝑟 e 𝑛2 = 𝑞1...𝑞𝑠. Portanto, 𝑛 = 𝑝1...𝑝𝑟𝑞1...𝑞𝑠.

Mostraremos, também, a unicidade da escrita. Suponha que 𝑛 = 𝑝1...𝑝𝑟 = 𝑞1...𝑞𝑠,
onde 𝑝𝑖 e 𝑝𝑗 são números primos. Como 𝑝1|𝑞1...𝑞𝑠, pelo corolário anterior, temos que
𝑝1 = 𝑞𝑗 para algum 𝑗 que, após reordenar 𝑞1...𝑞𝑠, podemos assumir que seja 𝑞1. Portanto,
𝑝2...𝑝𝑟 = 𝑞2...𝑞𝑠. Como 𝑝2...𝑝𝑟 < 𝑛, a hipótese de indução conclui que 𝑟 = 𝑠 e os 𝑝𝑖 e 𝑞𝑗

são iguais a seus pares. □

Ordenando os primos em ordem crescente e contabilizando os fatores repetidos,
este resultado também pode ser escrito da seguinte forma:

Teorema 2.1.6. Dado um número 𝑛 ∈ N, 𝑛 > 1, existem primos 𝑝1 < ... < 𝑝𝑟 e 𝛼1, ...𝛼𝑟 ∈
N*, univocamente determinados, tais que

𝑛 = 𝑝𝛼1
1 ...𝑝𝛼𝑟

𝑟

A demonstração pode ser encontrada em (HEFEZ, 2006).
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Teorema 2.1.7. Existem infinitos números primos.

Demonstração. Suponha que exista apenas um número finito de números primos
𝑝1, ...𝑝𝑟.

Considere o número natural 𝑛 = 𝑝1𝑝2...𝑝𝑟 +1. O número 𝑛 possui um fator primo 𝑝

que, portanto, deve ser um dos 𝑝1, ..., 𝑝𝑟 e, por consequência, 𝑝 divide o produto 𝑝1𝑝2...𝑝𝑟.

Mas isso implica que 𝑝 divide 1. Absurdo!

□

Teorema 2.1.8 (Lema de Eratóstenes). Se um número inteiro 𝑛 > 1 não é divisível por
nenhum primo 𝑝 tal que 𝑝2 ≤ 𝑛, então ele é primo.

Demonstração. Por absurdo, suponhamos que 𝑛 não seja divisível por nenhum
número primo 𝑝 tal que 𝑝2 ≤ 𝑛 e que 𝑛 não seja primo.

Se 𝑛 for composto, segue que existe algum primo 𝑞, o menor número primo que
divide 𝑛. Isto é, 𝑛 = 𝑞 * 𝑛1 para algum 𝑛1 ∈ Z com 𝑞 ≤ 𝑛1, pois 𝑞 é o menor primo que
divide 𝑛.

Ao multiplicar a desigualdade por 𝑞, segue daí que 𝑞2 ≤ 𝑞𝑛1 = 𝑛. Logo, 𝑛 é
divisível por um número primo 𝑞 tal que 𝑞2 ≤ 𝑛. Absurdo!

□

Baseado neste último Lema, foi criado o Crivo de Eratóstenes, um método para
descobrir todos os números primos até um certo número natural 𝑛. Este método consiste
em, partindo do número 2, excluir todos os valores da tabela que sejam múltiplos de
2, depois os múltiplos de 3, e assim por diante. De acordo com o Lema, apenas será
necessário fazer este processo até o valor de

√
𝑛.

Na tabela 5, obtivemos o Crivo de Eratóstenes para 𝑛 = 120. Para ela, apenas foi
necessário testar os valores até

√
𝑛 =

√
120, ou seja, até 7, visto que o próximo número

primo, 11, ultrapassa a raíz quadrada, e os valores entre 7 e 11 já estariam previamente
excluídos.

2.2 Aritmética Modular

Definição 2.2.1. Dizemos que dois números inteiros 𝑎 e 𝑏 são congruentes módulo 𝑛 se
os restos de sua divisão euclidiana de 𝑎 e 𝑏 por 𝑛 são iguais. Escrevemos isso como:

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)
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Tabela 5 – Crivo de Eratóstenes para 𝑛 = 120

2 3 �4 5 �6 7 �8 �9 ��10 11 ��12
13 ��14 ��15 ��16 17 ��18 19 ��20 ��21 ��22 23 ��24
��25 ��26 ��27 ��28 ��29 ��30 31 ��32 ��33 ��34 ��35 ��36
37 ��38 ��39 ��40 41 ��42 43 ��44 ��45 ��46 47 ��48
��49 ��50 ��51 ��52 53 ��54 ��55 ��56 ��57 ��58 59 ��60
61 ��62 ��63 ��64 ��65 ��66 67 ��68 ��69 ��70 71 ��72
73 ��74 ��75 ��76 ��77 ��78 79 ��80 ��81 ��82 83 ��84
��85 ��86 ��87 ��88 89 ��90 ��91 ��92 ��93 ��94 ��95 ��96
97 ��98 ��99 ��100 101 ��102 103 ��104 ��105 ��106 107 ��108
109 ��110 ��111 ��112 113 ��114 ��115 ��116 ��117 ��118 ��119 ��120

Propriedades da Congruência Modular:

1. Todo número é congruente módulo 𝑛 a si próprio, ou seja, 𝑎 ≡ 𝑎 𝑚𝑜𝑑 𝑛;

2. Se 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛, então 𝑏 ≡ 𝑎 𝑚𝑜𝑑 𝑛;

3. Se 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 e 𝑏 ≡ 𝑐 𝑚𝑜𝑑 𝑛, então 𝑎 ≡ 𝑐 𝑚𝑜𝑑 𝑛;

4. Se 𝑎 ≡ 𝑎′ 𝑚𝑜𝑑 𝑛 e 𝑏 ≡ 𝑏′ 𝑚𝑜𝑑 𝑛, então 𝑎 + 𝑏 ≡ 𝑎′ + 𝑏′ 𝑚𝑜𝑑 𝑛 e 𝑎 * 𝑏 ≡ 𝑎′ * 𝑏′ 𝑚𝑜𝑑 𝑛;

5. Em particular, 𝑎𝑘 ≡ (𝑎′)𝑘 𝑚𝑜𝑑 𝑛, para qualquer 𝑘 ≥ 0.

Proposição 2.2.1. Suponha 𝑎, 𝑏 ∈ N tais que 𝑏 ≥ 𝑎. Tem-se que 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 se, e
somente se, 𝑚|𝑏 − 𝑎.

Demonstração. Pela Divisão Euclidiana, temos que 𝑎 = 𝑚𝑞 + 𝑟, com 𝑟 < 𝑚 e
𝑏 = 𝑚𝑞′ + 𝑟′, com 𝑟′ < 𝑚′. Logo,

𝑏 − 𝑎 =

⎧⎪⎨⎪⎩𝑚(𝑞′ − 𝑞) + (𝑟′ − 𝑟), se 𝑟′ ≥ 𝑟

𝑚(𝑞′ − 𝑞) − (𝑟′ − 𝑟), se 𝑟 ≥ 𝑟′

onde 𝑟′ − 𝑟 < 𝑚 ou 𝑟 − 𝑟′ < 𝑚. Portanto, 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑚 se, e somente se, 𝑟 = 𝑟′, o
que equivale a dizer que 𝑚|𝑏 − 𝑎.

□
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Definição 2.2.2 (Sistema Completo de Resíduos). Chamamos de sistema completo de
resíduos módulo 𝑚 todo conjunto de números naturais cujos restos pela divisão por 𝑚

são os números 0, 1, ..., 𝑚 − 1, sem repetições e numa ordem qualquer. Assim, sistema
completo de resíduos módulo 𝑚 possui 𝑚 elementos.

Proposição 2.2.2. Sejam 𝑎, 𝑚 ∈ N, com 𝑚 > 1. A congruência 𝑎𝑋 ≡ 1 𝑚𝑜𝑑 𝑛 possui
uma solução 𝑥0 se, e somente se, 𝑚𝑑𝑐(𝑎, 𝑚) = 1. Além disso, 𝑥 é uma solução da
congruência se, e somente se, 𝑥 ≡ 𝑥0 𝑚𝑜𝑑 𝑚.

Demonstração. A congruência terá solução 𝑥0 se, e somente se, 𝑚|𝑎𝑥0 − 1, o que
equivale a dizer que a equação diofantina 𝑎𝑋 − 𝑚𝑌 = 1 possui solução em números
naturais. Isso ocorre se, e somente se, 𝑚𝑑𝑐(𝑎, 𝑚) = 1.

Por outro lado, se 𝑥0 e 𝑥 são equações da congruência 𝑎𝑋 ≡ 1 𝑚𝑜𝑑 𝑛, então
𝑎𝑥 ≡ 𝑎𝑥0 𝑚𝑜𝑑 𝑚, o que implica que 𝑥 ≡ 𝑥0 𝑚𝑜𝑑 𝑚. Se 𝑥0 é solução da congruência e
𝑥 ≡ 𝑥0 𝑚𝑜𝑑 𝑚, então 𝑥 também é solução da congruência, pois

𝑎𝑥 ≡ 𝑎𝑥0 ≡ 1 𝑚𝑜𝑑 𝑚

Se considerarmos que duas soluções congruentes módulo 𝑚 são, essencialmente, a
mesma, temos ainda a unicidade da solução da congruência 𝑎𝑋 ≡ 1 𝑚𝑜𝑑 𝑛.

□

2.2.1 Função 𝜑(𝑚) de Euler

Definição 2.2.3. Designaremos por 𝜑(𝑚) (ou função phi de Euler) o número de elementos
de um sistema reduzido de resíduos módulo 𝑚 que corresponde à quantidade de números
naturais entre 0 e 𝑛 − 1 que são primos com 𝑚.

𝜑 : N* → N

Note que 𝜑(𝑚) ≤ 𝑚 − 1, sendo que 𝜑(𝑚) = 𝑚 − 1 ⇔ m é primo.

Teorema 2.2.1 (Teorema de Euler). Sejam 𝑚, 𝑎 ∈ Z com 𝑚 > 1 e 𝑚𝑑𝑐(𝑎, 𝑚) = 1.
Então,

𝑎𝜑(𝑚) ≡ 1 (𝑚𝑜𝑑 𝑚)
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Demonstração. Seja 𝑟1, ..., 𝑟𝜑(𝑚) um sistema reduzido de resíduos módulo 𝑚. Logo,
𝑎 * 𝑟1, ..., 𝑎 * 𝑟𝜑(𝑚) também formam um sistema reduzido de resíduos módulo 𝑚. Assim,

𝑎𝜑(𝑚)𝑟1 * 𝑟2 * ... * 𝑟𝜑(𝑚) = 𝑎𝑟1 * 𝑎𝑟2 * ... * 𝑎𝑟𝜑(𝑚) ≡ 𝑟1 * 𝑟2 * ... * 𝑟𝜑(𝑚) 𝑚𝑜𝑑 𝑚

Como 𝑚𝑑𝑐(𝑟1 * 𝑟2 * ... * 𝑟𝜑(𝑚), 𝑚) = 1, 𝑎𝜑(𝑚) ≡ 1 (𝑚𝑜𝑑 𝑛). □

Teorema 2.2.2 (Pequeno Teorema de de Fermat). Sejam 𝑎 ∈ Z e 𝑝 um número primo
tais 𝑚𝑑𝑐(𝑎, 𝑝) = 1. Se 𝑝 ̸ | 𝑎, então:

𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝)

Demonstração. Basta utilizar o Teorema de Euler e notar que, 𝑝 sendo primo,
𝜑(𝑝) = 𝑝 − 1. □

Teorema 2.2.3 (Teorema do Resto Chinês). (HEFEZ, 2006) O sistema

𝑋 ≡ 𝑐1 𝑚𝑜𝑑 𝑛1

𝑋 ≡ 𝑐2 𝑚𝑜𝑑 𝑛2

...

𝑋 ≡ 𝑐𝑟 𝑚𝑜𝑑 𝑛𝑟,

onde 𝑚𝑑𝑐(𝑛𝑖, 𝑛𝑗) = 1, para todo par 𝑛𝑖, 𝑛𝑗 com 𝑖 ̸= 𝑗, possui uma única solução módulo
𝑁 = 𝑛1 * 𝑛2 * ... * 𝑛𝑟. Tal solução pode ser obtida desta forma:

𝑥 = 𝑁1 * 𝑦1 * 𝑐1 + ... + 𝑁𝑟 * 𝑦𝑟 * 𝑐𝑟,

onde 𝑁𝑖 = 𝑁
𝑛𝑖

e 𝑦𝑖 é a solução de 𝑁𝑖𝑌 ≡ 1 𝑚𝑜𝑑 𝑛𝑖, 𝑖 = 1, ..., 𝑟.

Demonstração. (⇒) Inicialmente, provamos que 𝑥 é uma solução simultânea do
sistema. De fato, como 𝑛𝑖|𝑁𝑗, se 𝑖 ̸= 𝑗 e 𝑁𝑖𝑦𝑖 ≡ 1 𝑚𝑜𝑑 𝑛𝑖, segue-se que

𝑥 = 𝑁1 * 𝑦1 * 𝑐1 + ... + 𝑁𝑟 * 𝑦𝑟 * 𝑐𝑟 ≡ 𝑁𝑖 * 𝑦𝑖 * 𝑐𝑖 ≡ 𝑐𝑖 𝑚𝑜𝑑 𝑛𝑖.

(⇐) Por outro lado, se 𝑥′ é outra solução do sistema, então

𝑥 ≡ 𝑥′ 𝑚𝑜𝑑 𝑛𝑖, ∀𝑖, 𝑖 = 1, ..., 𝑟.

Como 𝑚𝑑𝑐(𝑛𝑖, 𝑛𝑗) = 1, para 𝑖 ̸= 𝑗, segue-se que [𝑛1, ..., 𝑛𝑟] = 𝑛1 * ... * 𝑛𝑟 = 𝑁 e,
consequentemente, temos que 𝑥 ≡ 𝑥′ 𝑚𝑜𝑑 𝑁. □
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Proposição 2.2.3. Sejam 𝑚, 𝑚′ ∈ N, com 𝑚 > 1, 𝑚′ > 1 e 𝑚𝑑𝑐(𝑚, 𝑚′) = 1,

𝜑(𝑚 * 𝑚′) = 𝜑(𝑚) * 𝜑(𝑚′)

Demonstração. Consideramos a seguinte tabela formada pelos números naturais
de 1 até 𝑚 * 𝑚′:

1 2 ... k ... m’
m’ + 1 m’+2 ... m’+k ... 2m’
... ... ... ...
(m-1)m’+1 (m-1)m’+2 ... (m-1)m’+k ... mm’

Como 𝑚𝑑𝑐(𝑡, 𝑚 * 𝑚′) = 1 se, e somente se, 𝑚𝑑𝑐(𝑡, 𝑚) = 𝑚𝑑𝑐(𝑡, 𝑚′) = 1, para
calcular 𝜑(𝑚 * 𝑚′), determinamos os números da tabela que são simultaneamente primos
com 𝑚 e com 𝑚′.

Se o primeiro elemento da coluna não for primo com 𝑚′, todos os elementos não são.
Dessa forma, os elementos primos com 𝑚′ estão obrigatoriamente nas colunas restantes,
que são, em número, 𝜑(𝑚′).

Vejamos quais são os elementos primos com 𝑚 destas colunas.

Como 𝑚𝑑𝑐(𝑚, 𝑚′) = 1, a sequência

𝑘, 𝑚′ + 𝑘, ..., (𝑚 − 1)𝑚′ + 𝑘

forma um sistema completo de resíduos módulo 𝑚, e, portanto, 𝜑(𝑚) desses elementos
são primos com 𝑚.

Portanto, o número de elementos simultaneamente primos com 𝑚′ e 𝑚 é 𝜑(𝑚) *
𝜑(𝑚′).

□

Lema 2.2.1. Se 𝑝 é um número primo e 𝑟 é um número natural, tem-se que

𝜑(𝑝𝑟) = 𝑝𝑟 − 𝑝𝑟−1 = 𝑝𝑟(1 − 1
𝑝

).

Demonstração. De 1 até 𝑝𝑟, temos 𝑝𝑟 números naturais. Excluiremos destes os
que não forem primos com 𝑝𝑟, ou seja, todos os múltiplos de 𝑝, que são 𝑝, 2𝑝, ..., 𝑝𝑛−1𝑝, de
modo que são exatamente 𝑝𝑛−1 elementos. Portanto, 𝜑(𝑝𝑟) = 𝑝𝑟 − 𝑝𝑟−1.

□
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Teorema 2.2.4. Se 𝑚 = 𝑝𝛼1
1 ...𝑝𝛼𝑛

𝑛 é a decomposição de 𝑚 em fatores primos, então

𝜑(𝑚) = 𝑝𝛼1
1 ...𝑝𝛼𝑛

𝑛 (1 − 1
𝑝1

)...(1 − 1
𝑝𝑛

),

que também pode ser escrito como

𝜑(𝑚) = 𝑝𝛼1−1
1 ...𝑝𝛼𝑛−1

𝑛 (𝑝1 − 1)...(𝑝𝑛 − 1).

Demonstração. O resultado decorre do Lema acima.

□
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3 Critografia RSA

Como já visto anteriormente, com a grande utilização de meios inseguros para
a comunicação nos dias de hoje, urge a necessidade de que estas trocas de mensagem
possuam duas propriedades importantes: a privacidade do conteúdo e a possibilidade de
assiná-lo de alguma forma, para que exista uma comprovação do autor real da mensagem.

Para isso, Whitfield Diffie e Martin Hellman desenvolveram, como solução para
os problemas que a criptografia enfrentava há séculos, a chamada "Criptografia de Chave
Pública". Esse método consiste na utilização de duas chaves diferentes: uma chave pública,
conhecida por todos do meio; e uma chave privada, conhecida apenas pelo destinatário
da mensagem. (HELLMAN, 1978)

A Criptografia RSA (RIVEST; SHAMIR; ADLEMAN, 1978), datada dos anos
70, é um dos primeiros métodos de chave pública amplamente utilizados. Ela utiliza
uma combinação de função exponencial com aritmética modular, que é conhecida como
uma função de mão única, de tal modo que torna-se computacionalmente inviável tentar
decriptar a mensagem sem ter a chave privada.

Figura 2 – Exemplo de encriptação de mensagem com a criptografia de chave pública
Fonte: Elaborado pela autora.

Em uma criptografia de chave pública, ao enviar uma mensagem para Bob, Alice
utiliza a chave pública dele para encriptar o conteúdo, de modo que, caso a mensagem seja



Capítulo 3. Critografia RSA 29

interceptada por Eva, ela não será capaz de compreendê-la. Em seguida, ocorre o processo
de decriptação, no qual Bob utiliza sua chave privada para ler a mensagem verdadeira.

3.1 Método de funcionamento da RSA
Tomando uma mensagem M, o RSA utiliza uma chave pública (𝑒, 𝑛) e uma chave

privada 𝑑 para realizar os cálculos necessários. Abaixo, será brevemente explicado como
é dado seu funcionamento.

1. Inicialmente, a mensagem a ser enviada é representada como um inteiro entre 0 e
𝑛 − 1 (caso necessário, é preciso quebrar a mensagem em blocos), tomando 𝑛 como
o produto de dois primos 𝑝 e 𝑞.

2. A partir deste número, obteremos a função phi de Euler, Φ(𝑛) = (𝑝 − 1)(𝑞 − 1), do
qual extrairemos a outra chave pública 𝑒 e a chave privada 𝑑.

3. Estes valores serão obtidos tomando 𝑑 como um número coprimo de Φ(𝑛), e 𝑒 de
modo que 𝑒𝑑 ≡ 1 mod Φ(𝑛).

4. O resultado criptografado que será enviado para o segundo usuário será 𝐶 ≡ 𝑀 𝑒

mod 𝑛.

5. Para decifrar a mensagem, ele deverá, então, realizar a operação com a chave privada
𝑀 ≡ 𝐶𝑑 mod 𝑛.

Exemplo 3.1.1. Tomando 𝑛 como o produto dos primos 𝑝 = 11 e 𝑞 = 17, obteremos

𝑛 = 11 * 17 = 187

e, por sua vez,
Φ(𝑛) = (11 − 1) * (17 − 1) = 160.

Podemos utilizar 𝑑 = 7, visto que 𝑚𝑑𝑐(7, 160) = 1, e, portanto 𝑑 e Φ(𝑛) são coprimos.
Deste modo, ao calcular o valor de 𝑒, obteremos 𝑒 = 23, pois

𝑒𝑑 = 7 * 23 = 161 ≡ 1 𝑚𝑜𝑑 160.

Então, encontramos que 𝑛 = 187, 𝑑 = 7, 𝑒 = 23.

Supondo que a mensagem a ser encriptada seja 𝑀 = 8, teremos

𝐶 ≡ 𝑀 𝑒 𝑚𝑜𝑑 𝑛 ≡ 823 𝑚𝑜𝑑 187

≡ 590295810358705651712 𝑚𝑜𝑑 187 ≡ 83 𝑚𝑜𝑑 187.
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Logo, o destinatário receberá C = 83.

Após isso, será utilizado o valor privado de 𝑑 = 7 para decriptar a mensagem, e
teremos

𝑀 ≡ 𝐶𝑑 𝑚𝑜𝑑 𝑛 ≡ 837 𝑚𝑜𝑑 187

≡ 27136050989627 𝑚𝑜𝑑 187 ≡ 8 𝑚𝑜𝑑 187

Deste modo, o destinatário finalmente receberá a mensagem original 𝑀 = 8.

Exemplo 3.1.2. É claro que, comumente, será necessário também encriptar mensagens
mais longas, bem como palavras ou textos. Como exemplo deste processo para uma
mensagem maior, iremos criptografar a palavra MATEMATICA. Para a simplificação
do processo, consideraremos todas as letras em maiúsculo, sem a presença de acentos.

Para isso, será necessário, inicialmente, converter todas as letras em números.
Utilizaremos a tabela 6 para isso.

Perceba que os valores deverão começar com 𝐴 = 10, para haver clareza sobre
os blocos que representam as letras. Devido ao fato de que será feito uma concatenação
dos blocos em seguida, caso resolvêssemos iniciar por 𝐴 = 1, 𝐵 = 2, ..., 𝑍 = 26, ao
encontrarmos a mensagem 𝑀 = 12, não saberíamos dizer se ela corresponde aos valores
de 𝐴 = 1 e 𝐵 = 2 ou apenas a um único bloco 𝐿 = 12.

Tabela 6 – Tabela de Conversão

A B C D E F G H I J K L M
10 11 12 13 14 15 16 17 18 19 20 21 22

N O P Q R S T U V W X Y Z
23 24 25 26 27 28 29 30 31 32 33 34 35

Assim, convertendo a mensagem letra a letra, obtemos:

𝑀 = 22

𝐴 = 10

𝑇 = 29

𝐸 = 14

𝑀 = 22

𝐴 = 10

𝑇 = 29
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𝐼 = 18

𝐶 = 12

𝐴 = 10

Portanto, a mensagem a ser encriptada será a concatenação 𝑀 = 22102914221029181210.

Utilizando, agora, 𝑝 = 17 e 𝑞 = 19, teremos 𝑛 = 𝑝 * 𝑞 = 17 * 19 = 323, e, ainda,
𝜑(𝑛) = (𝑝 − 1) * (𝑞 − 1) = 16 * 18 = 288.

Então, iniciamos o processo, quebrando a mensagem em blocos, de modo que, em
cada bloco, permaneça um valor menor do que 𝑛 = 323. Assim,

M1 M2 M3 M4 M5 M6 M7
221 0291 42 210 291 81 210

Fonte: Elaborado pela autora.

Criptografamos cada um dos blocos pela fórmula 𝐶𝑖 ≡ (𝑀𝑖)𝑒 𝑚𝑜𝑑 𝑛. Neste caso,
utilizaremos 𝑒 = 5.

𝐶1 = 2215 𝑚𝑜𝑑 323 ≡ 255 𝑚𝑜𝑑 323

𝐶2 = 2915 𝑚𝑜𝑑 323 ≡ 100 𝑚𝑜𝑑 323

𝐶3 = 425 𝑚𝑜𝑑 323 ≡ 264 𝑚𝑜𝑑 323

𝐶4 = 2105 𝑚𝑜𝑑 323 ≡ 58 𝑚𝑜𝑑 323

𝐶5 = 2915 𝑚𝑜𝑑 323 ≡ 100 𝑚𝑜𝑑 323

𝐶6 = 815 𝑚𝑜𝑑 323 ≡ 47 𝑚𝑜𝑑 323

𝐶7 = 2105 𝑚𝑜𝑑 323 ≡ 58 𝑚𝑜𝑑 323

De modo que a mensagem encriptada será 255.100.264.58.100.47.58.

A descriptografia será feita a partir da chave privada 𝑑, que podemos calcular em
função dos outros valores que possuímos.

Como 𝑒 e 𝑑 precisam ser, necessariamente, inversos multiplicativos módulo 𝜑(𝑛),
encontramos que 𝑑 = 173, pois

5 * 173 = 865 = 3 * 288 + 1,

ou seja,
𝑒𝑑 ≡ 1 𝑚𝑜𝑑 288.

Para cada bloco criptografado, fazemos 𝑀𝑖 ≡ (𝐶𝑖)𝑑 𝑚𝑜𝑑 𝑛.
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𝑀1 = 255173 𝑚𝑜𝑑 323 ≡ 221 𝑚𝑜𝑑 323

𝑀2 = 100173 𝑚𝑜𝑑 323 ≡ 291 𝑚𝑜𝑑 323

𝑀3 = 264173 𝑚𝑜𝑑 323 ≡ 42 𝑚𝑜𝑑 323

𝑀4 = 58173 𝑚𝑜𝑑 323 ≡ 210 𝑚𝑜𝑑 323

𝑀5 = 100173 𝑚𝑜𝑑 323 ≡ 291 𝑚𝑜𝑑 323

𝑀6 = 47173 𝑚𝑜𝑑 323 ≡ 81 𝑚𝑜𝑑 323

𝑀7 = 58173 𝑚𝑜𝑑 323 ≡ 210 𝑚𝑜𝑑 323

Voltamos, assim, à mensagem original 𝑀 = 221.291.42.210.291.81.210. A partir
daqui, é necessário apenas reorganizar a mensagem de dois em dois algarismos e conferir
na tabela para verificar que retornamos à mensagem MATEMATICA.

3.2 Fundamentação para seu funcionamento
Mostraremos que

𝐷(𝐸(𝑀)) = 𝑀 = 𝐸(𝐷(𝑀))

.

Neste caso, seja 𝑎 um bloco da mensagem, mostraremos que

(𝑎𝑒)𝑑 ≡ (𝑎𝑑)𝑒 ≡ 𝑎 𝑚𝑜𝑑 𝑛.

Uma das propriedades da potenciação transformará estes expoentes em um pro-
duto, que será comutativo. Portanto, basta mostrar

(𝑎𝑒)𝑑 ≡ 𝑎 𝑚𝑜𝑑 𝑛.

Para isso, utilizaremos a propriedade

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑝𝑞 ⇔

⎧⎪⎨⎪⎩𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑝

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Como sabemos que

𝑒𝑑 ≡ 1 𝑚𝑜𝑑 𝜑(𝑛)
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e
𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1),

podemos escrever

𝑒𝑑 = 𝑘(𝑝 − 1)(𝑞 − 1) + 1, para algum k natural.

Provaremos, então que

𝑎𝑘(𝑝−1)(𝑞−1)+1 ≡ 𝑎 𝑚𝑜𝑑 𝑝𝑞,

que será equivalente a provar que

1. 𝑎𝑘(𝑝−1)(𝑞−1)+1 ≡ 𝑎 𝑚𝑜𝑑 𝑝

2. 𝑎𝑘(𝑝−1)(𝑞−1)+1 ≡ 𝑎 𝑚𝑜𝑑 𝑞

Demonstração (1).

Se 𝑝|𝑎, então 0 ≡ 𝑎 ≡ 𝑎𝑘(𝑝−1)(𝑞−1)+1 𝑚𝑜𝑑 𝑝.

Se p não divide a, pelo Pequeno Teorema de Fermat, temos

𝑎𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝

então,
[𝑎𝑝−1]𝑘(𝑞−1) ≡ 1𝑘(𝑞−1) ≡ 1 𝑚𝑜𝑑 𝑝

Podemos multiplicar a equivalência por a, obtendo

𝑎𝑘(𝑝−1)(𝑞−1)+1 ≡ 𝑎 𝑚𝑜𝑑 𝑝

□

A demonstração (2) será análoga.
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4 Álgebra

O seguinte capítulo foi baseado em Domingues e Iezzi (2003), e trata-se da funda-
mentação algébrica necessária para os próximos resultados.

4.1 Álgebra

4.1.1 Grupos

Definição 4.1.1. Seja ⋆ uma operação definida em um conjunto 𝐺. Dizemos que o par
(𝐺, ⋆) é um grupo se, e somente se

• O conjunto G é fechado sob a operação, isto é, ∀𝑔, ℎ ∈ 𝐺, 𝑔 ⋆ ℎ ∈ 𝐺

• A operação ⋆ é associativa, isto é, ∀𝑔, ℎ, 𝑘 ∈ 𝐺, (𝑔 ⋆ ℎ) ⋆ 𝑘 = 𝑔 ⋆ (ℎ ⋆ 𝑘)

• Existe um elemento identidade 𝑒 ∈ 𝐺 para ⋆, isto é, ∃𝑒 ∈ 𝐺, ∀𝑔 ∈ 𝐺, 𝑒⋆𝑔 = 𝑔 ⋆𝑒 = 𝑔

• Para todo elemento 𝑔 ∈ 𝐺 existe um elemento inverso ℎ ∈ 𝐺 tal que 𝑔⋆ℎ = ℎ⋆𝑔 = 𝑒

Definição 4.1.2. Seja (𝐺, ⋆) um grupo. Dizemos que 𝐺 é grupo abeliano se ⋆ for uma
operação comutativa em 𝐺, isto é, se ∀𝑔, ℎ ∈ 𝐺, 𝑔 ⋆ ℎ = ℎ ⋆ 𝑔.

Proposição 4.1.1. Se (𝐺, ⋆) é um grupo, então

• o elemento neutro é único;

• o elemento inverso é único.

Exemplo 4.1.1. (Q*, *): O conjunto dos números racionais com a operação de multipli-
cação usual é um grupo abeliano, pois vale o axioma da comutatividade, com o elemento
neutro 1, e o inverso de um elemento 𝑎 ∈ Q* é 𝑎−1 em Q*. Como a operação nesse
grupo é a multiplicação, o chamamos de grupo multiplicativo. Da mesma forma, (Q, +)
é chamado de grupo aditivo.

Definição 4.1.3. A ordem de um grupo é o número de elementos do conjunto 𝐺. Deno-
tamos por |𝐺|. 𝐺 pode ser um grupo de ordem infinita, caso 𝐺 seja um grupo com um
número infinito de elementos.
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4.1.2 Anéis

Definição 4.1.4. Um conjunto 𝐴 com as operações de adição (+) e multiplicação (*) é
um anel se:

1. (𝐴, +) é um grupo abeliano, com o elemento neutro 0 ∈ 𝐴 e, para todo 𝑎 ∈ 𝐴, o
elemento inverso −𝑎 ∈ 𝐴.

2. (𝐴, *) é um semigrupo, ou seja, em 𝐴 valem:

• Fechamento: ∀𝑎, 𝑏 ∈ 𝐴, 𝑎 * 𝑏 ∈ 𝐴.

• Associatividade: ∀𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑎 * (𝑏 * 𝑐) = (𝑎 * 𝑏) * 𝑐.

3. A operação * é distributiva em relação a +, ou seja, tomando quaisquer 𝑎, 𝑏, 𝑐 ∈ 𝐴,

(𝑎 + 𝑏) * 𝑐 = 𝑎 * 𝑐 + 𝑏 * 𝑐

𝑎 * (𝑏 + 𝑐) = 𝑎 * 𝑏 + 𝑎 * 𝑐

Definição 4.1.5. Se além das propriedades citadas anteriormente, 𝐴 também satisfazer
as seguintes:

• Existir elemento neutro na multiplicação, ou seja ∃1 ∈ 𝐴; ∀𝑎 ∈ 𝐴, 𝑎 * 1 = 1 * 𝑎 = 𝑎.

• A multiplicação ser uma operação comutativa, ou seja, ∀𝑎, 𝑏 ∈ 𝐴, 𝑎 * 𝑏 = 𝑏 * 𝑎

então, 𝐴 é um anel comutativo com identidade.

Definição 4.1.6. Para todo inteiro 𝑛 > 1, definimos como anel das classes de resto
módulo m, o conjunto

Z𝑛 = {0, 1, ..., 𝑛 − 1}

em relação às operações
𝑎 + 𝑏 = 𝑎 + 𝑏, 𝑎 * 𝑏 = 𝑎𝑏.

O zero neste anel será a classe 0, enquanto que o oposto de um elemento 𝑎 ∈ Z𝑛

é a classe 𝑚 − 𝑎.

Definição 4.1.7. Seja 𝐴 um anel comutativo com unidade. Se, para este anel, vale a lei
do anulamento do produto, ou seja, se uma igualdade do tipo

𝑎𝑏 = 0𝐴

em que 𝑎, 𝑏 ∈ 𝐴 só for possível para 𝑎 = 0𝐴 ou 𝑏 = 0𝐴, então se diz que 𝐴 é um anel de
integridade ou domínio.
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Em um anel comutativo 𝐴 em que não é verificada a lei do cancelamento, ou seja,
há pelo menos um par de elementos 𝑎, 𝑏 ̸= 0; 𝑎𝑏 = 0𝐴, diz-se que 𝑎 e 𝑏 são divisores
próprios do zero do anel.

Proposição 4.1.2. Um anel de classes de restos Z𝑛 é anel de integridade se, e somente
se, 𝑛 é um número primo.

Demonstração. (⇒) Suponha 𝑛 composto, então podemos encontrar inteiros 𝑎, 𝑏

tal que 0 < 𝑎, 𝑏 < 𝑚 e 𝑚 = 𝑎𝑏. Portanto, 𝑎, 𝑏 ∈ Z𝑛, 𝑎, 𝑏 ̸= 0 e 𝑎𝑏 = 𝑚 = 0, que
corresponde ao zero do anel, o que contraria a hipótese.

(⇐) Sabemos que Z𝑛 é um anel comutativo com unidade, qualquer que seja 𝑚 > 1.
Suponhamos que 𝑎 * 𝑏 = 𝑎𝑏 = 0 para algum par de elementos 𝑎, 𝑏 ∈ Z𝑛. Portanto,
𝑎𝑏 = 𝑛𝑞, 𝑞 ∈ Z, logo, 𝑛|𝑎𝑏. Mas, como 𝑛 é primo, por hipótese, então 𝑛|𝑎 ou 𝑛|𝑏. Mas
essas relações, em termos de classe de equivalência, se traduzem por 𝑎 = 0 ou 𝑏 = 0.
Ou seja, se 𝑛 é primo, Z𝑛 não possui divisores próprios do zero. (DOMINGUES; IEZZI,
2003) □

4.1.3 Corpos

Definição 4.1.8. Seja 𝐴 um anel comutativo com identidade. Dizemos que 𝑎 ∈ 𝐴* é
inversível se existe 𝑎−1 ∈ 𝐴, tal que

𝑎 * 𝑎−1 = 𝑎−1 * 𝑎 = 1

Se para todo 𝑎 ∈ 𝐴 existir 𝑎−1, dizemos que 𝐴 é um corpo.

Teorema 4.1.1. Temos que 𝑎 ∈ Z𝑛 é inversível para a multiplicação se, e somente se,
𝑚𝑑𝑐(𝑎, 𝑛) = 1.

Demonstração. Suponha que 𝑛 e 1 < 𝑎 < 𝑛 são inteiros que possuem um fator
primo em comum 1 < 𝑝 < 𝑛. Podemos escrever 𝑛 = 𝑝 * 𝑐 e 𝑎 = 𝑝 * 𝑒. Como 1 < 𝑝 < 𝑛,
então 𝑐 = 𝑛

𝑝
também satisfaz 1 < 𝑐 < 𝑛. Por sua vez, como 1 < 𝑎 < 𝑛 por hipótese, temos

que nem 𝑐, nem 𝑎 são congruentes a zero módulo 𝑛. No entanto,

𝑐 * 𝑎 ≡ 𝑐 * 𝑝 * 𝑒 𝑚𝑜𝑑 𝑛.

Porém, 𝑛 = 𝑐 * 𝑝, então 𝑐 * 𝑝 ≡ 𝑛 ≡ 0 𝑚𝑜𝑑 𝑛, de onde sai que

𝑐 * 𝑎 ≡ 𝑐 * 𝑝 * 𝑒 ≡ 0 𝑚𝑜𝑑 𝑛. (4.1)

Supondo que 𝑎 realmente possua um inverso 𝑎′ módulo 𝑛, teríamos que 𝑎 * 𝑎′ ≡
1 𝑚𝑜𝑑 𝑛. Multiplicando ambos os membros por 𝑐, obtemos 𝑐 * (𝑎 * 𝑎′) ≡ 𝑐 𝑚𝑜𝑑 𝑛, ou seja,

(𝑐 * 𝑎) * 𝑎′ ≡ 𝑐 𝑚𝑜𝑑 𝑛. (4.2)



Capítulo 4. Álgebra 37

Porém, por 4.1, 𝑐 * 𝑎 ≡ 0 𝑚𝑜𝑑 𝑛, de modo que (𝑐 * 𝑎) * 𝑎′ ≡ 0 * 𝑎′ ≡ 0 𝑚𝑜𝑑 𝑛.
Comparando com a equação 4.2, obtemos que 𝑐 ≡ 0 𝑚𝑜𝑑 𝑛, ou seja, 𝑛 divide 𝑐. Isto é
um absurdo, visto que, por hipótese, 1 < 𝑐 < 𝑛. Portanto, 𝑎 não possui inverso módulo
𝑛. □

Teorema 4.1.2. O anel Z𝑛 é um corpo se, e somente se, 𝑛 é primo.

Demonstração. Como já foi demonstrado, se 𝑛 é primo, então, Z𝑛 é um anel de
integridade. Como Z𝑛 é finito, asseguramos que Z𝑛 é um corpo. □

4.2 Geometria Algébrica
Para este trabalho, utilizaremos o conceito de curvas elípticas da geometria al-

gébrica, que possuem aplicações na criptografia quando definidas sobre corpos finitos.
(??)

Definição 4.2.1. Seja K um corpo (R,Q,C ou F𝑞, um corpo finito de 𝑞 = 𝑝𝑟 elementos,
onde 𝑝 é primo e 𝑟 ∈ Z+), com característica diferente de 2 e 3, e seja 𝑋3 + 𝑎𝑋 + 𝑏 (onde
𝑎, 𝑏 ∈ 𝐾), um polinômio cúbico sem raízes múltiplas. Uma curva elíptica sobre 𝐾 é o
conjunto de pontos (𝑥, 𝑦) ∈ 𝐾2 que satisfazem:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (4.3)

junto de um elemento chamado ponto no infinito, que pode ser denotado por 𝑂.

Observação. Seja F(x,y) = 0 uma equação implícita que define uma curva elíptica
e que possui 𝑦 e 𝑥 como variáveis desta função em 4.3, isto é,

𝐹 (𝑥, 𝑦) = 𝑦2 − 𝑥3 − 𝑎𝑥 − 𝑏,

então, um ponto (𝑥, 𝑦) na curva é chamado "não singular"se o gradiente ∇𝐹 é não nulo
neste ponto.

Pode-se mostrar que a condição para que os polinômios cúbicos à direita de 4.3
não tenham raízes múltiplas é equivalente a dizer que todos os pontos na curva são não
singulares.

4.2.1 Curvas Elípticas sobre os Números Reais

Mostraremos que o conjunto de pontos de uma curva elíptica junto do ponto no
infinito 𝑂 forma um grupo abeliano, bastando definir o ponto no infinito e a soma de dois
pontos deste grupo sobre um corpo.(FLOSE, 2011)

Por definição, o ponto no infinito é a identidade do grupo.
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Definição 4.2.2. Seja E uma curva elíptica 𝐹 (𝑥, 𝑦) = 𝑦2 − 𝑥3 − 𝑎𝑥 − 𝑏 com 𝐾 = R, e
sejam 𝑃 e 𝑄 dois pontos em 𝐸. Define-se o oposto de 𝑃 e a soma 𝑃 + 𝑄 de acordo com
as seguintes regras:

1. Se 𝑃 é um ponto no infinito, define-se −𝑃 como 𝑂 e 𝑃 + 𝑄 como 𝑄, ou seja,
𝑂 serve como identidade aditiva do grupo de pontos.

Para as próximas regras, supomos que nem 𝑃 e nem 𝑄 são pontos no infinito.

2. O oposto −𝑃 é dado por −(𝑥, 𝑦) = (𝑥, −𝑦), ou seja, a mesma coordenada 𝑥 e
o oposto da coordenada 𝑦 de 𝑃 . É possível perceber que 𝑃 e −𝑃 pertencerão simultane-
amente à curva 4.3.

3. Se 𝑃 e 𝑄 têm diferentes coordenadas em 𝑥, a reta 𝑙 = 𝑃𝑄 intercepta a curva
em mais um ponto 𝑅. Define-se, então, 𝑃 + 𝑄 como −𝑅, isto é, a imagem simétrica em
relação ao eixo 𝑥 deste terceiro ponto.

Figura 3 – 𝑃 + 𝑄 = −𝑅

Fonte: Elaborado pela autora.

4. Para o caso anterior, caso a reta seja tangente à curva em 𝑃 (ou 𝑄), tomamos
𝑅 = 𝑃 (ou 𝑅 = 𝑄). Deste modo, teremos 𝑃 + 𝑄 = −𝑃 (ou 𝑃 + 𝑄 = −𝑄).

5. Se 𝑄 = −𝑃 , então, 𝑃 + 𝑄 é definido como o ponto no infinito 𝑂.

6. Se 𝑃 = 𝑄, então, seja 𝑙 a reta tangente à curva em 𝑃 e seja 𝑅 o único outro
ponto de interseção de 𝑙 com a curva. Definimos 𝑃 + 𝑄 = −𝑅. Se 𝑃 é um ponto de
inflexão, ou seja, 𝑙 encontra 𝐸 em um único ponto, 𝑅 será igual a 𝑂.

Deste modo, percebemos que esta operação de soma é fechada em relação ao
conjunto dos pontos de 𝐸 unidos ao ponto 𝑂. Além disso, mostramos que existe o
elemento neutro 𝑂 e o elemento simétrico −𝑃, ∀𝑃 ∈ 𝐸.

A demonstração da associatividade pode ser encontrada em Meireles (2020).
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Figura 4 – Soma para o caso em que a reta é tangente a 𝑄

Fonte: Elaborado pela autora.

Figura 5 – Soma para o caso 𝑃 + 𝑄 = 𝑃 − 𝑃 = 𝑂

Fonte: Elaborado pela autora.

4.2.2 Curvas Elípticas sobre Corpos Finitos

Para a Criptografia de Curvas Elípticas, utilizaremos os conceitos vistos anterior-
mente, porém aplicados em corpos finitos.

Seja F𝑝 um corpo finito, com 𝑝 primo. Tomando uma curva elíptica 𝐸 sobre este
corpo, caso esta possua uma quantidade finita de pares (𝑥, 𝑦) com 𝑥, 𝑦 ∈ F𝑝, o corpo
𝐸(F𝑝) é finito.

Exemplo 4.2.1. Seja 𝐸 a curva 𝑦2 = 𝑥2 + 𝑥 + 1 sobre F5. Contaremos os pontos em 𝐸.

Inicialmente, faremos uma lista com todos os possíveis valores para 𝑥, considerando
que estamos no corpo F5. Em seguida, calculamos 𝑥3+𝑥+1 𝑚𝑜𝑑 5 e suas raízes quadradas
𝑦 dentro de F5. Adicionaremos, ainda, o elemento neutro (o ponto no infinito). Isso nos
dará os pontos em 𝐸.
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Figura 6 – Caso em que 𝑃 é ponto de inflexão
Fonte: Elaborado pela autora.

Figura 7 – Soma para o caso 𝑃 + 𝑄 = 2𝑃 = −𝑅

Fonte: Elaborado pela autora.

Logo, como pode ser visualizado na tabela 7, 𝐸(F5) é um corpo finito de ordem 9.

Como outro exemplo, computaremos (3, 1)+(2, 4) em 𝐸. A inclinação da reta que
passará por estes pontos é dada por

4 − 1
2 − 3 ≡ 2 𝑚𝑜𝑑 5,

e, então, a reta será
𝑦 = 2(𝑥 − 3) + 1 = 2𝑥 − 5 ≡ 2𝑥 𝑚𝑜𝑑 5.

Substituindo em 𝑦2 = 𝑥3 + 𝑥 + 1, temos 𝑥3 − 4𝑥2 + 𝑥 + 1 = 0.

Pela propriedade do coeficiente do 𝑥2, sabemos que as raízes somam 4. No entanto,
já conhecemos as raízes 3 e 2, então, sabemos que a raíz restante é 𝑥 = 4.
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Tabela 7 – Pontos em 𝐸(F5) (MEIRELES, 2020)

x x3 + 𝑥 + 1 𝑚𝑜𝑑 5 y Pontos
0 1 ±1 (0,1),(0,4)
1 3 - -
2 1 ±1 (2,1),(2,4)
3 1 ±1 (3,1),(3,4)
4 4 ±2 (4,2),(4,3)
∞ ∞ ∞

Como 𝑦 = 2𝑥, temos que 𝑦 ≡ 3. Refletindo através do eixo 𝑥, temos que

(3, 1) + (2, 4) = (4, −3) = (4, 2).
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5 Criptografia de Curvas Elípticas

5.1 Método de funcionamento da ECC

5.1.1 Multiplicação de pontos

Sabendo que a curva elíptica 𝐸 é um grupo aditivo, as operações que utilizaremos
para a nossa "função de mão única"não serão exponenciais, como na Criptografia RSA,
mas sim, multiplicativas.

Neste caso, a analogia de elevar para a 𝑘-ésima potência em F𝑝 é o mesmo que
multiplicar um ponto 𝑃 ∈ 𝐸 por um inteiro 𝑘.

Esta multiplicação, no entanto, não é feita somando o ponto a si mesmo um número
𝑘 de vezes, mas sim, modificando a operação para que apenas seja necessário realizar
"dobragens"do ponto, bem como algumas adições.

Exemplo 5.1.1. Para encontrar 100𝑃 , não é necessário realizar 100 operações, pois é
possível escrever

100𝑃 = 2(50𝑃 )

100𝑃 = 2(2𝑃 + 48𝑃 )

100𝑃 = 2(2𝑃 + 2(24𝑃 ))

100𝑃 = 2(2𝑃 + 2(2(12𝑃 )))

100𝑃 = 2(2𝑃 + 2(2(2(6𝑃 ))))

100𝑃 = 2(2𝑃 + 2(2(2(2(3𝑃 )))))

100𝑃 = 2(2𝑃 + 2(2(2(2(2𝑃 + 𝑃 )))))

100𝑃 = 2(2(𝑃 + 2(2(2(𝑃 + 2𝑃 )))))

Portanto, apenas será necessário realizar 6 multiplicações e 2 adições de pontos
para encontrarmos o valor de 100𝑃 .

5.1.2 Escolhendo os parâmetros

Os parâmetros escolhidos para a implementação da ECC são:

• A equação (ou seja, os valores para 𝑎 e 𝑏);
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• O valor 𝑝 do corpo, que deverá ser um número primo;

• O ponto base para os cálculos;

• A ordem do ponto base (que será uma função dos outros parâmetros, e é recomen-
dável que seja preferencialmente grande).

Lembramos que, a chave pública, neste caso, será a multiplicação entre o ponto
base e a chave privada.

Exemplo 5.1.2 (Bitcoin). Uma das mais conhecidas aplicações atuais da ECC é o Bit-
coin, uma criptomoeda que utiliza a criptografia para controlar o registro de transações da
unidade monetária, por meio da atribuição de assinaturas (ULRICH, 2014). Deste modo,
torna-se uma moeda independente, que não necessita de bancos ou outras instituições
para seu funcionamento.

O Bitcoin utiliza números grandes para garantir a segurança de suas transações,
bem como todas as aplicações reais da Criptografia de Curvas Elípticas.

A seleção de parâmetros para o Bitcoin é conhecida como secp256k1, e os parâme-
tros utilizados são:

• Equação: 𝑦2 = 𝑥3 + 7

• 𝑝 = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 = FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

• Ponto base: 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419
9C47D08F FB10D4B8

• Ordem: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B
BFD25E8C D0364141

Perceba como, mesmo todos os valores utilizados para a criptografia que segura
o Bitcoin sendo de público acesso, a criptomoeda consegue manter sua segurança pela
complexidade em conseguir "quebrar"o código com força bruta.

Na ECDSA, a chave privada é escolhida aleatoriamente entre o número 1 e a ordem.
No contexto de corpos finitos, existem algumas equações que podem ser utilizadas para
representar a soma de dois pontos e a duplicação de um ponto.

Para a soma 𝑅 = 𝑃 + 𝑄, com 𝑃 = (𝑃𝑥, 𝑃𝑦) e 𝑄 = (𝑄𝑥, 𝑄𝑦), 𝑅 = (𝑅𝑥, 𝑅𝑦) pode
ser definida como
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Figura 8 – Curva utilizada para a execução do Bitcoin
Fonte: Elaborado pela autora.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐 = 𝑄𝑦−𝑃𝑦

𝑄𝑥−𝑃𝑥

𝑅𝑥 = 𝑐2 − 𝑃𝑥 − 𝑄𝑥

𝑅𝑦 = 𝑐(𝑃𝑥 − 𝑅𝑥) − 𝑃𝑦

Além disso, para a duplicação do ponto 𝑃 para encontrar 𝑅, temos

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐 = 3𝑃 2

𝑥 +𝑎
2𝑃𝑦

𝑅𝑥 = 𝑐2 − 2𝑃𝑥

𝑅𝑦 = 𝑐(𝑃𝑥 − 𝑅𝑥) − 𝑃𝑦

Exemplo 5.1.3. Queremos encontrar a chave pública que corresponde aos seguintes
parâmetros:

• Equação: 𝑦2 = 𝑥3 + 7, ou seja, 𝑎 = 0, 𝑏 = 7

• 𝑝 = 67

• Ponto base: (2, 22)

• Ordem: 79

• Chave privada: 2

Como temos uma chave privada de valor 2, tudo o que precisaremos fazer é duplicar
o valor de (2, 22), para encontrar o ponto correspondente.
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Primeiro, encontramos o valor de 𝑐:

𝑐 = 3 * 22 + 0
2 * 22 𝑚𝑜𝑑 67

𝑐 = 3 * 4
44 𝑚𝑜𝑑 67

𝑐 = 12
44 𝑚𝑜𝑑 67

Como, no corpo F⋪⋫, temos que 44−1 = 32, obtemos:

𝑐 = 12 * 32 𝑚𝑜𝑑 67

𝑐 = 384 𝑚𝑜𝑑 67

𝑐 = 49

Com o valor de 𝑐, agora, encontraremos as coordenadas de 𝑅:

𝑅𝑥 = (492 − 2 * 2) 𝑚𝑜𝑑 67

𝑅𝑥 = (2401 − 4) 𝑚𝑜𝑑 67

𝑅𝑥 = 2397 𝑚𝑜𝑑 67

𝑅𝑥 = 52

𝑅𝑦 = (49 * (2 − 52) − 22) 𝑚𝑜𝑑 67

𝑅𝑦 = (49 * (−50) − 22) 𝑚𝑜𝑑 67

𝑅𝑦 = (−2450 − 22) 𝑚𝑜𝑑 67

𝑅𝑦 = −2472𝑚𝑜𝑑67

𝑅𝑦 = 7

Portanto, o valor correspondente à chave pública será o ponto (52, 7).

5.1.3 Assinatura

O processo de assinatura também é parte fundamental dos criptossistemas mencio-
nados. É a partir dele que, além de um destinatário da mensagem conseguir interpretá-la,
também conseguirá comprovar quem foi o remetente original da mesma.

Tomando 𝐺 como o ponto base, 𝑛 como a sua ordem, 𝑧 a mensagem a ser assinada
e 𝑑 a chave privada, a escolha para o par (𝑟, 𝑠) que corresponde à assinatura é dada da
seguinte forma:
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1. Escolha um inteiro 𝑘 entre 1 e 𝑛 − 1

2. Calcule o ponto (𝑥, 𝑦) = 𝑘 * 𝐺

3. Encontre 𝑟 = 𝑥 𝑚𝑜𝑑 𝑛. Se 𝑟 = 0, retorne ao passo 1.

4. Encontre 𝑠 = 𝑘−1(𝑧 + 𝑟 * 𝑑) 𝑚𝑜𝑑 𝑛. Se 𝑠 = 0, retorne ao passo 1.

5. A assinatura será o par (𝑟, 𝑠).

Com a mensagem devidamente assinada, precisaremos de um método para com-
provar se a assinatura é realmente válida, pois esta poderia ter sido forjada por algum
invasor do meio.

Para verificarmos, utilizamos os seguintes passos:

1. Verifique que 𝑟 e 𝑠 estão entre 1 e 𝑛 − 1

2. Calcule 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛

3. Calcule 𝑢 = 𝑧 * 𝑤 𝑚𝑜𝑑 𝑛

4. Calcule 𝑣 = 𝑟 * 𝑤 𝑚𝑜𝑑 𝑛

5. Calcule (𝑥, 𝑦) = 𝑢𝐺 + 𝑣𝑃𝐴

6. Verifique que 𝑟 = 𝑥 𝑚𝑜𝑑 𝑛. A assinatura será invalida se não for.

Exemplo 5.1.4. O dado que assinaremos será 𝑧 = 17. Nosso ponto base será 𝐺 = (2, 22)
com a chave privada 𝑑 = 2 e a ordem 𝑛 = 79 novamente.

Primeiramente, encontraremos o par (𝑟, 𝑠) que assina a mensagem.

1. Escolheremos o número aleatório 𝑘 = 3

2. Calcularemos o ponto (𝑥, 𝑦) = 𝑘 * 𝐺, ou seja, (𝑥, 𝑦) = 3 * (2, 22).

Mas (𝑥, 𝑦) = 3𝐺 = 2𝐺+𝐺 e já calculamos 2𝐺 = (52, 7), logo (𝑥, 𝑦) = (52, 7)+(2, 22).

E, com a fórmula anterior, encontraremos

(𝑥, 𝑦) = (62, 63)

3. Calcularemos 𝑟 = 𝑥 𝑚𝑜𝑑 𝑛, ou seja, 𝑟 = 62 𝑚𝑜𝑑 79.

Assim, encontramos 𝑟 = 62. Como 𝑟 ̸= 0, continuaremos.
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4. Calcularemos 𝑠 = 𝑧+𝑟*𝑑
𝑘

𝑚𝑜𝑑 𝑛.

Teremos que 𝑠 = 17+62*2
3 𝑚𝑜𝑑 79

𝑠 = 17 + 124
3 𝑚𝑜𝑑 79

𝑠 = 141
3 𝑚𝑜𝑑 79

𝑠 = 47 𝑚𝑜𝑑 79

𝑠 = 47

5. Assim, a assinatura será o par (62, 47).

Encontrado o par (𝑟, 𝑠), verificaremos a sua veracidade.

1. Tanto 𝑟 = 62 quanto 𝑠 = 47 são menores do que 78, então está verificado.

2. Calcularemos 𝑤 = 𝑠−1 𝑚𝑜𝑑 𝑛

𝑤 = 47−1 𝑚𝑜𝑑 79 = 37

3. Calcularemos 𝑢 = 𝑧 * 𝑤 𝑚𝑜𝑑 𝑛

𝑢 = 17 * 37 𝑚𝑜𝑑 79 = 629 𝑚𝑜𝑑 79 = 76

4. Calcularemos 𝑣 = 𝑟 * 𝑤 𝑚𝑜𝑑 𝑛

𝑣 = 62 * 37 𝑚𝑜𝑑 79 = 2294 𝑚𝑜𝑑 79 = 3

5. Calcularemos o ponto (𝑥, 𝑦) = 𝑢𝐺 + 𝑣𝑄

𝑢𝐺 = 76𝐺 = (62, 4)

𝑣𝑄 = 3𝑄 = 𝑄 + 2𝑄 = (11, 20)

Então, (𝑥, 𝑦) = (62, 63)

6. Por fim, verificamos que 𝑟 = 𝑥 𝑚𝑜𝑑 𝑛.

Isto é confirmado, pois, 62 = 62 𝑚𝑜𝑑 79.

Logo, a assinatura é verificada.
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5.2 Fundamentação para seu funcionamento

5.2.1 O uso de um ponto secreto 𝑆

Primeiro, explicaremos brevemente como ocorre o funcionamento do algoritmo da
ECC em si. Para isso, utilizaremos a comutatividade da multiplicação escalar.

Supomos que Alice possua uma chave privada 𝑎 e uma chave pública 𝑃𝐴 = 𝑎 × 𝐺

(sendo 𝐺 o ponto gerador público) e Bob possua, da mesma forma, as chaves 𝑏 e 𝑃𝐵. Caso
Bob queira enviar uma mensagem para Alice, ele deverá utilizar sua chave privada 𝑏 e a
chave pública de Alice 𝑃𝐴, computando um ponto secreto 𝑆, desta forma:

𝑆 = 𝑏 × 𝑃𝐴

Repare que, o que Bob está fazendo, consiste, no fundo, em realizar as seguintes
operações:

𝑆 = 𝑏 × (𝑎 × 𝐺)

Alice, por sua vez, computará um ponto secreto 𝑆 ′, que será obtido pela multipli-
cação da sua chave privada com a chave pública de Bob.

𝑆 ′ = 𝑎 × 𝑃𝐵

Perceba, também, que esta operação pode ser escrita da seguinte forma:

𝑆 ′ = 𝑎 × (𝑏 × 𝐺)

É possível notar, portanto, que pela associatividade e comutatividade das opera-
ções, teremos que 𝑆 = 𝑆 ′.

𝑆 = 𝑏 × (𝑎 × 𝐺) = (𝑏 × 𝑎) × 𝐺 = (𝑎 × 𝑏) × 𝐺 = 𝑆 ′

Deste modo, tanto Alice como Bob possuem a mesma chave secreta 𝑆, que não é
possível um usuário do meio inseguro conseguir interceptar.

Este problema pode, ainda, ser pensado da seguinte maneira: dados 𝐺, 𝑎𝐺 e 𝑏𝐺,
pela complexidade dos objetos, torna-se de grande dificuldade descobrir 𝑎𝑏𝐺.

Perceba que, com isto, provamos que Alice e Bob possuem acesso à mesma chave
secreta, mas nada dissemos sobre encriptação e decriptação de mensagens enviadas por
eles. Isso se deve pelo fato de que a ECC sozinha não provê um método de encriptação,
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necessitando de algum tipo de esquema híbrido, em que, no final, a criptografia é realizada
de modo simétrico. Isso é possível utilizando alguma informação obtida de 𝑆, como, por
exemplo, utilizar sua coordenada 𝑥 como chave. Um exemplo amplamente utilizado é a
ECDH (Elliptic Curve Diffie-Hellman).

5.2.2 Assinatura e Verificação

Por sua vez, para a explicação da assinatura e sua verificação, estaremos supondo
que Alice esteja assinando.

Lembramos inicialmente que, ao final da verificação, constatamos que

𝑃 = 𝑢𝐺 + 𝑣𝑃𝐴,

onde 𝑃𝐴 é a chave pública de Alice.

No entanto, como 𝑃𝐴 = 𝑑𝐴𝐺, logo,

𝑃 = 𝑢𝐺 + 𝑣𝑑𝐴𝐺.

Dessa forma, podemos isolar 𝐺, de modo que

𝑃 = (𝑢 + 𝑣𝑑𝐴)𝐺.

Mas, como 𝑢 = 𝑧𝑤 e 𝑣 = 𝑟𝑤, ignorando, por ora, as parcelas de 𝑚𝑜𝑑 𝑛, temos que

𝑃 = (𝑤𝑧 + 𝑤𝑟𝑑𝐴)𝐺.

E, assim, isolamos 𝑤, para que tenhamos

𝑃 = 𝑤(𝑧 + 𝑟𝑑𝐴)𝐺.

Mas, sabemos ainda que 𝑘 = 𝑤(𝑧 +𝑟𝑑𝐴) 𝑚𝑜𝑑 𝑛. Dessa forma, retornamos ao valor
original de

𝑃 = 𝑘𝐺.

Assim, confirmamos que a assinatura está verificada.
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6 Implementação

A implementação da Criptografia de Curvas Elípticas foi feita utilizando a lingua-
gem de programação Python (Python Software Foundation, 2025). Para uma utilização
mais simples, o código foi gerado no software online Google Colab (Google Research,
2017).

A biblioteca Python utilizada foi a biblioteca ecies. A sigla ECIES refere-se ao
Elliptic Curve Integrated Encryption Scheme (ou seja, Esquema de Criptografia Integrada
de Curva Elíptica), que corresponde a um dos sistemas híbridos de criptografia menciona-
dos anteriormente. Esta biblioteca ajuda a gerar, com grande facilidade, chaves públicas
e privadas baseadas em uma curva elíptica específica.

A curva padrão do ECIES é a mesma curva padrão para o Bitcoin que já mencio-
namos anteriormente (𝑦2 = 𝑥3 + 7), chamada de "secp256k1".

As funções da biblioteca ecies utilizadas para o funcionamento do código são as
seguintes:

• PrivateKey: Gera uma chave privada, ou seja, um ponto da curva elíptica selecio-
nada.

• public_key: Com base na chave privada previamente escolhida, gera uma chave
pública.

• encrypt: Função que recebe a chave pública e os dados a serem criptografados e
devolve, em bytes, os dados encriptados.

• decrypt: Função que recebe a chave privada e os dados a serem decriptografados e
devolve, em bytes, os dados decriptados.

Abaixo, é demonstrado um exemplo de chave privada e chave pública (ambas com
valores hexadecimais) gerados pela curva secp256k1.

Chave privada : 1 af3d2ee465c84a980fa3a31b0cec23c184c89409ee85

a9e58d51607afe9f622

Chave publica : 04 bd2dc0415704d054cba9e03da05f0327325a2cc3b

006715 c4176f6648f4cee9b880fa5e96e56f948fedec3f77eb9d268be1

b79572e345d56c3c557c52dda48ce

Além disso, foram utilizadas algumas funções da biblioteca base64 :



Capítulo 6. Implementação 51

• b64encode: Codifica os dados para base64, retornando em bytes os dados codificados
em formato ASCII.

• b64decode: Decodifica os dados que estão em base64, retornando os bytes originais.

O código completo pode ser visualizado no anexo A.

6.1 Base 64
A codificação em base 64 é projetada para representar sequências arbitrárias de

grupos de oito caractéres, de modo que não necessariamente seja legível para outros
usuários.

São utilizados um subconjunto de 65 caractéres do ASCII, o que permite que
cada caractér possua seis bits. O 65º caractér é o "=", conhecido como padding. Ele
representa uma função especial que ajuda o processo de codificação e decodificação da
base64 (JOSEFSSON, 2006).

O processo de codificação funciona ao representar grupos de 24 bits de entrada
como cadeias de 4 caracteres codificados. Avançando da esquerda para a direita, um
grupo de entrada de 24 bits é formado pela concatenação de três grupos de entrada de 8
bits. Esses 24 bits, então, são então tratados como 4 grupos concatenados de 6 bits, cada
um dos quais é traduzido em um único caractere no alfabeto Base 64.

Valor Cod. Valor Cod. Valor Cod. Valor Cod.
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v (pad) =
14 O 31 f 48 w
15 P 32 g 49 x
16 Q 33 h 50 y

Tabela 8 – Alfabeto Base 64 conforme RFC 4648 (JOSEFSSON, 2006)
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Se menos de 24 bits estiverem disponíveis ao final dos dados, bits com valor zero
serão adicionados à direita para formar um número inteiro com 6 bits. Este preenchimento
é feito usando o caractér "=".

Como toda entrada em base 64 é um número inteiro múltiplo de oito, apenas os
seguintes casos podem ocorrer:

• A última parcela de entrada possui exatamente 24 bits; neste caso, a última unidade
de saída será um múltiplo de 4 caracteres, sem necessidade de padding.

• A última parcela possui exatamente 16 bits; nesse caso, a saída final possui 3 carac-
teres seguidos de um padding.

• A última parcela possui exatamente 8 bits; nesse caso, a saída possui dois caracteres
seguidos de dois paddings.

Dados Base64
M TQ==
MA TUE=
MAT TUFU
MATE TUFURQ==
MATEM TUFURU0=
MATEMÁ TUFURU3DgQ==
MATEMÁT TUFURU3DgVQ=
MATEMÁTI TUFURU3DgVRJ
MATEMÁTIC TUFURU3DgVRJQw==
MATEMÁTICA TUFURU3DgVRJQ0E=

Tabela 9 – Exemplo de letras codificadas em base64
Fonte: Elaborado pela autora.

A utilização da base64 dentro do algoritmo garante que o destinatário da men-
sagem consiga decriptá-la da maneira correta e com segurança, de modo que não serão
corrompidos durante o processo.

6.2 Alguns resultados
A implementação prática do algoritmo baseado em Criptografia de Curvas Elípti-

cas permitiu analisar de forma comparativa seu desempenho em relação ao RSA.

Os testes foram feitos utilizando diferentes tipos de arquivos, como arquivo de
texto, imagem em jpeg, arquivo em pdf e outros. O primeiro teste foi feito utilizando o
poema "Canção do Exílio", de Gonçalves Dias. O tamanho do poema é de 695 bytes, e ele
demorou 0.0036s para ser encriptado e decriptado pela ECC, enquanto o mesmo processo
demorou 0.0719s na RSA, ou seja, cerca de 20 vezes a mais.
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Listing 6.1 – Poema Canção do Exílio (DIAS, 1957)
Minha terra tem palmeiras ,

Onde canta o Sabiá;

As aves , que aqui gorjeiam ,

Não gorjeiam como lá.

Nosso céu tem mais estrelas ,

Nossas várzeas têm mais flores ,

Nossos bosques têm mais vida ,

Nossa vida mais amores .

Em cismar , sozinho , à noite ,

Mais prazer eu encontro lá;

Minha terra tem palmeiras ,

Onde canta o Sabiá.

Minha terra tem primores ,

Que tais não encontro eu cá;

Em cismar sozinho , à n o i t e

Mais prazer eu encontro lá;

Minha terra tem palmeiras ,

Onde canta o Sabiá.

Não permita Deus que eu morra ,

Sem que eu volte para lá;

Sem que disfrute os primores

Que não encontro por cá;

Sem quinda aviste as palmeiras ,

Onde canta o Sabiá.

É claro que, apesar de a razão de um tempo pelo outro ter sido um número
substancialmente grande, ainda é possível argumentar que, para usos diários, a RSA não
apresentaria diferenças tão significativas, pois encontram-se na casa dos centésimos de
segundo.

Por isso, foram realizados outros testes, utilizando arquivos com diversos tama-
nhos.

Na tabela 10, segue alguns outros dados que foram testados no código, bem como
seus respectivos tamanhos e o tempo de demora em cada um dos algoritmos.

Os testes realizados demonstraram que a ECC apresentou um comportamento sig-
nificativamente mais eficiente, especialmente à medida que o volume de dados aumentava.
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Arquivo Tamanho ECC RSA
Canção do Exílio (txt) 695 bytes 0.0036 s 0.0719 s
Código em Python (py) 7.313 bytes 0.0058 s 0.1853 s
Planilha dos alunos da Matemática Aplicada (csv) 112.879 bytes 0.0095 s 0.5547 s
Monalisa (jpeg) 317.486 bytes 0.0113 s 1.515 s
Me at the zoo (mp4, 240p) 791.367 bytes 0.0200 s 3.6413 s

Tabela 10 – Comparação de desempenho entre RSA e ECC para diferentes arquivos
Fonte: Elaborado pela autora.

Enquanto o RSA mostrou tempos de execução progressivamente maiores conforme o ta-
manho das mensagens crescia, a ECC manteve um desempenho mais estável e responsivo.
Essa diferença tornou-se ainda mais evidente em cenários envolvendo operações com mui-
tos bytes, nos quais o RSA se mostrou substancialmente mais lento. Estas razões podem
ser observadas na tabela 11.

Algo que pode ser percebido também é que, para o arquivo de texto, sua versão
criptografada tornou-se um arquivo com apenas 9 linhas, formado, em sua maioria, por
símbolos que o computador não consegue escrever. Enquanto isso, para os demais arqui-
vos, não foi possível observar a versão criptografada. Esses fatores, juntos, comprovam a
dificuldade de algum usuário aleatório interceptar mensagens.

Arquivo Razão entre RSA e ECC
txt 19.97
py 31.94
csv 58.39
jpeg 134.07
mp4 182.06

Tabela 11 – Razão entre os algoritmos testados para cada arquivo
Fonte: Elaborado pela autora.

Com os dados obtidos, verificou-se que este aumento segue um padrão que se
aproxima mais do potencial. Essa tendência pôde ser observada pelo método de regressão
linear, cujo resultado pode ser visualizado na figura 9. A curva que apresentou maior
similaridade aos dados foi

𝑦 = 2.223𝑥0.312,

que obteve coeficiente de determinação 𝑅2 = 0.9077. O código utilizado para essa análise
pode ser visto no anexo A.
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Figura 9 – Curva que aproximou-se melhor dos dados
Fonte: Elaborado pela autora.
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7 Conclusão

No presente trabalho, foi possível compreender a grande importância do desenvol-
vimento da criptografia, em especial, no mundo atual, em que grande parte das interações
e transações efetuadas são realizadas por meios inseguros. A crescente digitalização da
sociedade tornou indispensável o uso de ferramentas criptográficas capazes de garantir
privacidade, integridade e autenticidade das informações trocadas, o que evidencia a re-
levância do tema estudado.

Estudamos o funcionamento destas criptografias, desde suas fundamentações ma-
temáticas, baseadas na Álgebra e na Aritmética, até exemplos práticos e verificações de
seus processos. Esse percurso permitiu estabelecer uma visão clara tanto das propriedades
teóricas quanto da aplicabilidade real dos métodos.

Com base nisso, pode-se concluir que a Criptografia de Curvas Elípticas apresenta
vantagens significativas em relação à Criptografia RSA, amplamente utilizada até os dias
de hoje. Esta vantagem se deve à necessidade de um comprimento menor da chave de
criptografia para atingir níveis equivalentes de segurança, além de um tempo computaci-
onal inferior na execução de suas operações. Esses fatores tornam a ECC particularmente
adequada para dispositivos com recursos limitados.

Percebeu-se, ainda, que não só a RSA atua de maneira mais lenta, como também
sofre um aumento proporcionalmente maior dessa lentidão à medida que o tamanho do
arquivo a ser criptografado cresce. Esse comportamento deixa evidente a diferença de
eficiência entre os dois métodos, reforçando a superioridade da ECC em cenários nos
quais o desempenho é fator crucial. Ainda foi verificado que o aumento segue um padrão
que se aproxima mais do potencial.

Os resultados obtidos reforçam a relevância e o potencial da Criptografia de Curvas
Elípticas no cenário atual, especialmente diante da crescente demanda por segurança
e eficiência nos sistemas digitais. Ainda que a RSA continue amplamente utilizada, a
tendência observada indica um movimento gradual em direção à adoção de métodos como
a ECC, que atendem melhor às necessidades tecnológicas atuais.

No entanto, para o futuro da criptografia mundial, é importante mencionar que
os estudos a respeito da computação quântica trazem grande fragilidade em relação aos
métodos de criptografia conhecidos. O algoritmo de Shor (SHOR, 1994) é conhecido por
conseguir vencer a dificuldade de encontrar fatores primos de números grandes, o que
comprometeria a segurança de sistemas criptográficos.

Isso acontece pois, na computação quântica, não temos mais bits, representados
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pelos valores de 0 e 1, mas sim qubits, que encontram-se em uma combinação linear entre
os estados 0 e 1, com coeficientes complexos (FREITAS, 2010). Em um computador
quântico, para fatorar um número 𝑛, o tempo necessário seria de apenas log 𝑛.
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ANEXO A – Códigos

Listing A.1 – Código Python da Implementação da ECC (e RSA)
#Dando upload no arquivo e salvando ele em uma variável

from google .colab import files

uploaded = files. upload ()

arquivoCaminho = list( uploaded .keys ())[ -1]

# ######## ECC

# Importar bibliotecas

from ecies import encrypt , decrypt

import base64 , os

from ecies.keys import PrivateKey

import time

tempoInicial = time. perf_counter ()

# Chaves privada e pública

secp_k = PrivateKey (" secp256k1 ")

# secp256k1 = curva utilizada para o bitcoin (y^2 = x^3 + 7)

privadaHex = secp_k . to_hex ()

publicaHex = secp_k . public_key . to_hex ()

# chaves pública e privadas convertidas para hexadecimal

# Dividir o caminho entre diretório e nome do arquivo

diretorio , nomeArquivo = os.path.split( arquivoCaminho )

arquivoEnc = os.path.join(diretorio , f’encriptado_ { nomeArquivo }’)

#cria arquivo para encripta ção

arquivoDec = os.path.join(diretorio , f’decriptado_ { nomeArquivo }’)

#cria arquivo para decripta ção

# Converter em base64

dados = 0

with open( arquivoCaminho , "rb") as f:

#rb = read binary ( leitura em binário)

dados = base64 . b64encode (f.read ())

# codifica esses bytes em base64
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secpEncriptado = encrypt (publicaHex , dados)

# encripta os dados com a chave pública

#Abre o arquivo encriptado e escreve nele

with open(arquivoEnc ,"wb") as ef:

#wb = write binary ( escrever em binário)

ef.write( secpEncriptado )

# Decripta ção

secpDecriptado = decrypt (privadaHex , secpEncriptado )

# decriptar o arquivo encriptado , utilizando a chave privada

#Abre o arquivo decriptado e escreve nele

with open(arquivoDec ,"wb") as df:

df.write( base64 . b64decode ( secpDecriptado ))

# decodifica uma string em base64 , voltando ao original

tempoFinal = time. perf_counter ()

print("\ nTempo necess ário:",tempoFinal - tempoInicial ," segundos .")

# ######## RSA

# Importando bibliotecas

from cryptography . hazmat . primitives . asymmetric import rsa , padding

from cryptography . hazmat . primitives import hashes

from cryptography . hazmat . backends import default_backend

tempoInicial = time. perf_counter ()

#Lendo o arquivo

with open( arquivoCaminho , "rb") as f:

dados_rsa = f.read ()

# Gerando par de chaves RSA

private_key = rsa. generate_private_key (

public_exponent =65537 ,

# expoente público , padrão mundial (primo e com formato binário simples )

key_size =2048 , #padrão moderno

backend = default_backend ()
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)

public_key = private_key . public_key ()

# Definindo tamanho máximo de cada partição da mensagem

hashSize = 32 # SHA -256 -> 32 bytes

tamanhoParticao = 2048 // 8 - 2 * hashSize - 2 # ~190 bytes

#2048 bits /8 = 256 bytes , o resto é requisito do algoritmo

# Dividindo a mensagem em partições

particoes = [ dados_rsa [i:i+ tamanhoParticao ] for i in range (0,

len( dados_rsa ), tamanhoParticao )]

# Criptografando cada partição

particoesEncriptadas = []

for particao in particoes :

particaoEncriptada = public_key . encrypt (

particao ,

padding .OAEP( # Optimal Asymmetric Encryption Padding

mgf= padding .MGF1( algorithm = hashes . SHA256 ()),

algorithm = hashes . SHA256 (),

label=None

)

)

particoesEncriptadas . append ( particaoEncriptada )

# Junta todas as partições criptografados

mensagemEnc = b"".join( particoesEncriptadas )

# Salva a mensagem criptografada

arquivoEnc = os.path.join(diretorio , f" rsa_encriptado_ { nomeArquivo }")

with open(arquivoEnc , "wb") as f:

f.write( mensagemEnc )

# Descriptografa cada partição

# O tamanho de cada partição criptografada = tamanho da chave

#em bytes

tamanhoPartEnc = 2048 // 8 # 256 bytes

particoesDec = [

private_key . decrypt (

mensagemEnc [i:i+ tamanhoPartEnc ],

padding .OAEP(



ANEXO A. Códigos 64

mgf= padding .MGF1( algorithm = hashes . SHA256 ()),

algorithm = hashes . SHA256 (),

label=None

)

)

for i in range (0, len( mensagemEnc ), tamanhoPartEnc )

]

# Junta partições descriptografadas

mensagemDec = b"".join( particoesDec )

# Salva mensagem descriptografada

arquivoDec = os.path.join(diretorio , f" rsa_decriptado_ { nomeArquivo }")

with open(arquivoDec , "wb") as f:

f.write( mensagemDec )

tempoFinal = time. perf_counter ()

print("\ nTempo necess ário:", tempoFinal - tempoInicial , " segundos .")

Listing A.2 – Código Python da Regressão Não-Linear
import numpy as np

import matplotlib . pyplot as plt

# Dados

numero_bytes = np.array ([695 , 7313 , 112879 , 317486 , 791367] , dtype=float)

razao_rsa_ecc = np.array ([19.97 , 31.94 , 58.39 , 134.07 , 182.06] , dtype= float)

# Transforma ção logarítmica para regress ão

log_bytes = np.log( numero_bytes )

log_razao = np.log( razao_rsa_ecc )

# Regress ão linear

expoente , ln_coeficiente = np. polyfit (log_bytes , log_razao , 1)

coeficiente = np.exp( ln_coeficiente )

print(" Modelo de potência: y = coeficiente * x^ expoente ")

print(f" Coeficiente = { coeficiente :.3f}")

print(f" Expoente = { expoente :.3f}")

# Valores ajustados

razao_ajustada = coeficiente * numero_bytes ** expoente
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# Calcular R quadrado

soma_residuos_quadrado = np.sum (( razao_rsa_ecc - razao_ajustada )**2)

soma_total_quadrado = np.sum (( razao_rsa_ecc - np.mean( razao_rsa_ecc ))**2)

r_quadrado = 1 - soma_residuos_quadrado / soma_total_quadrado

print(" R =", r_quadrado )

# Curva ajustada para plotagem

bytes_fit = np. linspace (min( numero_bytes ), max( numero_bytes ), 500)

razao_fit = coeficiente * bytes_fit ** expoente

# Plot

plt. scatter ( numero_bytes , razao_rsa_ecc , label="Dados", color=’blue ’)

plt.plot(bytes_fit , razao_fit , color=’green ’, label=f"y = { coeficiente :.3f} * x^{ expoente :.3f}")

plt. xlabel ("Número de bytes")

plt. ylabel ("Razão entre RSA e ECC")

plt. legend ()

plt.grid(True)

plt.title(" Ajuste de Potência")

plt.show ()
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